Cho hình vuông \(ABCD\) cạnh \(a\). Khi đó \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) bằng
\(a\sqrt{5}\) | |
\(\dfrac{a\sqrt{5}}{2}\) | |
\(2a\) | |
\(a\sqrt{3}\) |
Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA}\), \(\overrightarrow{F_2}=\overrightarrow{MB}\) và \(\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm \(M\) và vật đứng yên. Biết rằng \(\overrightarrow{F_1},\,\overrightarrow{F_2}\) đều có cường độ lực là \(60\)N, và chúng vuông góc với nhau. Tính cường độ lực \(\overrightarrow{F_3}\).
\(84,58\)N | |
\(84,86\)N | |
\(84,85\)N | |
\(120\)N |
Cho ba điểm phân biệt \(A,\,B,\,C\). Mệnh đề nào sau đây đúng?
\(AB+BC=AC\) | |
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\vec{0}\) | |
\(\overrightarrow{AB}=\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\) | |
\(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\) |
Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) thỏa mãn \(\left|\vec{a}+\vec{b}\right|=0\). Chọn phát biểu không đúng?
\(\vec{a},\,\vec{b}\) ngược hướng | |
\(\left|\vec{a}\right|=\left|\vec{b}\right|\) | |
\(\vec{a},\,\vec{b}\) đối nhau | |
\(\vec{a},\,\vec{b}\) bằng nhau |
Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\) | |
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\) |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
\(a\sqrt{3}\) | |
\(2a\) | |
\(a\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Cho hình vuông \(ABCD\) cạnh \(a\). Tính $$\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|.$$
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|=2a\sqrt{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|=3a\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|=2a+a\sqrt{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|=3a\sqrt{2}\) |
Cho tam giác \(OAB\) vuông cân tại \(O\), cạnh \(OA=a\). Tính \(\left|2\overrightarrow{OA}-\overrightarrow{OB}\right|\).
\(a\) | |
\(\left(1+\sqrt{2}\right)a\) | |
\(a\sqrt{5}\) | |
\(2a\sqrt{2}\) |
Cho hình thoi \(ABCD\) có \(AC=2a\) và \(BD=a\). Tính \(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|\).
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=3a\) | |
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{3}\) | |
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=a\sqrt{5}\) | |
\(\left|\overrightarrow{AC}+\overrightarrow{BD}\right|=5a\) |
Cho tam giác \(ABC\) cân tại \(A\), đường cao \(AH\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=\overrightarrow{AC}\) | |
\(\overrightarrow{HC}=-\overrightarrow{HB}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) | |
\(\overrightarrow{BC}=2\overrightarrow{HC}\) |
Cho hai lực \(\overrightarrow{F_1}=\overrightarrow{MA}\) và \(\overrightarrow{F_2}=\overrightarrow{MB}\) cùng tác động vào một vật tại điểm \(M\). Cường độ hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) lần lượt là \(300\)N và \(400\)N, góc \(\widehat{AMB}=90^\circ\). Tính cường độ lực tổng hợp tác động vào vật.
\(0\) | |
\(700\) | |
\(100\) | |
\(500\) |
Cho hai lực \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) có cùng điểm đặt tại \(O\). Biết \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) đều có cường độ là \(100\)N, góc hợp bởi \(\overrightarrow{F_1}\) và \(\overrightarrow{F_2}\) là \(120^\circ\). Cường độ lực tổng hợp của chúng là
\(200\)N | |
\(50\sqrt{3}\)N | |
\(100\sqrt{3}\)N | |
\(100\)N |
Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{\sqrt{3}}{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) |
Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\) |
Cho tam giác \(ABC\) vuông cân tại \(C\) với \(AB=\sqrt{2}\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{5}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{5}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{3}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{3}\) |
Cho tam giác \(ABC\) vuông cân tại \(A\) với \(AB=a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{a\sqrt{2}}{2}\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\) | |
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) |
Cho tam giác \(ABC\) vuông tại \(A\) và có \(AB=3\), \(AC=4\). Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\).
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\) | |
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=2\sqrt{13}\) | |
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=5\) | |
\(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=\sqrt{13}\) |
Cho hình vuông \(ABCD\) cạnh \(a\), tâm \(O\). Tính \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\).
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\sqrt{2}\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a}{2}\) | |
\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\dfrac{a\sqrt{2}}{2}\) |
Cho hình bình hành \(ABCD\) tâm \(O\). Hãy tìm đẳng thức đúng.
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{AB}\) | |
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OD}=\vec{0}\) | |
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}-\overrightarrow{OD}\) | |
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\vec{0}\) |
Cho tam giác \(ABC\) có \(AB=AC\) và đường cao \(AH\). Đẳng thức nào sau đây đúng?
\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AH}\) | |
\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\vec{0}\) | |
\(\overrightarrow{HB}+\overrightarrow{HC}=\vec{0}\) | |
\(\overrightarrow{AB}=\overrightarrow{AC}\) |