Cho tam giác \(ABC\) có trọng tâm \(G\), điểm \(N\) được xác định bởi hệ thức \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}\). Hãy biểu diễn vectơ \(\overrightarrow{AC}\) theo hai vectơ \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\).
![]() | \(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) |
![]() | \(\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) |
![]() | \(\overrightarrow{AC}=\dfrac{4}{3}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) |
![]() | \(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) |
Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB=3MC\). Hãy phân tích vectơ \(AM\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\).
![]() | \(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) |
![]() | \(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) |
![]() | \(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) |
![]() | \(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) |
Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\), \(G\) là trọng tâm. Khẳng định nào sau đây đúng?
![]() | \(\overrightarrow{AG}=\dfrac{2}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\) |
![]() | \(\overrightarrow{AG}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\) |
![]() | \(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\) |
![]() | \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AB}+3\dfrac{1}{2}\overrightarrow{AC}\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn \(\overrightarrow{MA}=\overrightarrow{MB}+\overrightarrow{MC}\). Khẳng định nào sau đây đúng?
![]() | \(A,\,B,\,C\) thẳng hàng |
![]() | \(AM\) là phân giác trong của góc \(\widehat{BAC}\) |
![]() | \(A,\,M\) và trọng tâm tam giác \(ABC\) thẳng hàng |
![]() | \(\overrightarrow{AM}+\overrightarrow{BC}=\vec{0}\) |
Cho tam giác \(ABC\). Có bao nhiêu điểm \(M\) thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\)?
![]() | \(1\) |
![]() | \(2\) |
![]() | \(0\) |
![]() | Vô số |
Cho tam giác \(ABC\) đều, cạnh \(a\), có \(I,\,J,\,K\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Tính giá trị của $$\left|\overrightarrow{AI}+\overrightarrow{BJ}+\overrightarrow{CK}\right|.$$
![]() | \(3a\) |
![]() | \(\dfrac{3a\sqrt{3}}{2}\) |
![]() | \(0\) |
![]() | \(\dfrac{a\sqrt{3}}{2}\) |
Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?
![]() | \(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\) |
![]() | \(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\) |
![]() | \(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\) |
![]() | \(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?
![]() | \(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) |
![]() | \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) |
![]() | \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) |
![]() | \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Mệnh đề nào sau đây sai?
![]() | \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\) |
![]() | \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) |
![]() | \(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) |
![]() | \(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm và \(I\) là trung điểm cạnh \(BC\). Đẳng thức nào sau đây đúng?
![]() | \(\overrightarrow{GA}=2\overrightarrow{GI}\) |
![]() | \(\overrightarrow{IG}=-\dfrac{1}{3}\overrightarrow{IA}\) |
![]() | \(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GI}\) |
![]() | \(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) |
Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\), \(I\) là trung điểm của \(AM\). Khẳng định nào sau đây đúng?
![]() | \(\overrightarrow{AI}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\) |
![]() | \(\overrightarrow{AI}=\dfrac{1}{4}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\) |
![]() | \(\overrightarrow{AI}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\) |
![]() | \(\overrightarrow{AI}=\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}\) |
Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?
![]() | $S$ là trung điểm đoạn $MN$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
![]() | $S$ nằm trên đoạn $AG$ sao cho $SA=3SG$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
Trong không gian, điểm $S$ là trọng tâm của tam giác $ABC$ nếu
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{0}$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{0}$ |
![]() | $\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AS}$ |
Cho tứ diện $ABCD$ có $G$ là trọng tâm tam giác $BCD$. Mệnh đề nào sau đây không đúng?
![]() | $\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AG}$ |
![]() | $\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}$ |
![]() | $\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$ |
![]() | $\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}-3\overrightarrow{AG}=\overrightarrow{0}$ |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
![]() | Tứ giác \(ABCD\) là hình bình hành |
![]() | \(G(9;7)\) là trọng tâm tam giác \(BCD\) |
![]() | \(\overrightarrow{AB}=\overrightarrow{CD}\) |
![]() | \(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Trong mặt phẳng tọa độ \(Oxy\), cho ba vectơ \(\vec{a}=(4;-1)\), \(\vec{b}=(1;-1)\) và \(\vec{c}=(2;1)\). Chọn mệnh đề đúng.
![]() | \(\vec{a}=\vec{b}-2\vec{c}\) |
![]() | \(\vec{a}=2\vec{b}-\vec{c}\) |
![]() | \(\vec{a}=2\vec{b}+\vec{c}\) |
![]() | \(\vec{a}=\vec{b}+\vec{c}\) |
Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(2;1)\), \(\vec{b}=(3;4)\) và \(\vec{c}=(7;2)\). Tìm giá trị của \(k,\,h\) sao cho $$\vec{c}=k\vec{a}+h\vec{b}$$
![]() | \(\begin{cases}k=\dfrac{5}{2}\\ h=-\dfrac{13}{10}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{23}{5}\\ h=-\dfrac{51}{10}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{22}{5}\\ h=-\dfrac{3}{5}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{17}{5}\\ h=-\dfrac{1}{5}\end{cases}\) |
Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(m;2)\), \(\vec{b}=(-5;1)\) và \(\vec{c}=(m;7)\). Tìm giá trị của \(m\), biết rằng \(\vec{c}=2\vec{a}+3\vec{b}\).
![]() | \(m=-15\) |
![]() | \(m=3\) |
![]() | \(m=15\) |
![]() | \(m=5\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn $$2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}.$$Khẳng định nào sau đây là đúng?
![]() | \(M\equiv A\) |
![]() | \(M\equiv B\) |
![]() | \(M\equiv C\) |
![]() | \(M\) là trọng tâm \(\triangle ABC\) |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
![]() | \(a\sqrt{3}\) |
![]() | \(2a\) |
![]() | \(a\) |
![]() | \(\dfrac{a\sqrt{3}}{2}\) |