Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
\(m=-5\) | |
\(m=4\) | |
\(m=0\) | |
\(m=-1\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?
\(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng | |
\(\vec{u},\,\vec{v}\) cùng phương | |
\(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng | |
\(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
$(10;-15)$ | |
$(15;10)$ | |
$(10;15)$ | |
$(-10;15)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.
$\overrightarrow{x}=(7;-7)$ | |
$\overrightarrow{x}=(9;5)$ | |
$\overrightarrow{x}=(9;-11)$ | |
$\overrightarrow{x}=(-1;5)$ |
Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.
$\overrightarrow{c}=\left(-3;-4\right)$ | |
$\overrightarrow{c}=\left(3;-4\right)$ | |
$\overrightarrow{c}=\left(-2;-3\right)$ | |
$\overrightarrow{c}=\left(-3;-2\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
$\overrightarrow{x}=(19;22)$ | |
$\overrightarrow{x}=(-19;-22)$ | |
$\overrightarrow{x}=(-19;22)$ | |
$\overrightarrow{x}=(19;-22)$ |
Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow{a}=(1;-1;3)\), \(\overrightarrow{b}=(2;0;-1)\). Tìm tọa độ véctơ \(\overrightarrow{u}=2\overrightarrow{a}-3\overrightarrow{b}\).
\(\overrightarrow{u}=\left(1;3;-11\right)\) | |
\(\overrightarrow{u}=\left(4;2;-9\right)\) | |
\(\overrightarrow{u}=\left(-4;-5;9\right)\) | |
\(\overrightarrow{u}=\left(-4;-2;9\right)\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=2\overrightarrow{AC}\) | |
\(A,\,B,\,C\) thẳng hàng | |
\(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\) |
Trong mặt phẳng tọa độ \(Oxy\), cho hai vectơ \(\vec{u}=(-1;2)\) và \(\vec{v}=(3;-2)\). Tính tọa độ của vectơ \(2\vec{u}-3\vec{v}\).
\((11;-10)\) | |
\((9;-10)\) | |
\((-11;-2)\) | |
\((-11;10)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(2;-4)\) và \(\vec{b}=(-5;3)\). Tìm tọa độ vectơ $\vec{u}=2\vec{a}-\vec{b}$.
\(\vec{u}=(7;-7)\) | |
\(\vec{u}=(9;-11)\) | |
\(\vec{u}=(9;-5)\) | |
\(\vec{u}=(-1;5)\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn \(\overrightarrow{MA}=\overrightarrow{MB}+\overrightarrow{MC}\). Khẳng định nào sau đây đúng?
\(A,\,B,\,C\) thẳng hàng | |
\(AM\) là phân giác trong của góc \(\widehat{BAC}\) | |
\(A,\,M\) và trọng tâm tam giác \(ABC\) thẳng hàng | |
\(\overrightarrow{AM}+\overrightarrow{BC}=\vec{0}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), điểm \(N\) được xác định bởi hệ thức \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}\). Hãy biểu diễn vectơ \(\overrightarrow{AC}\) theo hai vectơ \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\).
\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{4}{3}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\). Hãy phân tích vectơ \(\overrightarrow{AG}\) theo hai vectơ \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\).
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\) |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
\(a\sqrt{3}\) | |
\(2a\) | |
\(a\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB=3MC\). Hãy phân tích vectơ \(AM\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\).
\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) |
Cho hình vuông \(ABCD\) cạnh \(a\). Khi đó \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) bằng
\(a\sqrt{5}\) | |
\(\dfrac{a\sqrt{5}}{2}\) | |
\(2a\) | |
\(a\sqrt{3}\) |
Cho tam giác \(ABC\), trung tuyến \(AM\). Đẳng thức nào sau đây không đúng?
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) | |
\(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{CB}\) |
Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?
\(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?
\(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\) |