Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left(2;1;-1\right)\), \(B\left(3;0;1\right)\), \(C\left(2;-1;3\right)\) và đỉnh \(D\) nằm trên tia \(Oy\). Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
![]() | \(\left[\begin{array}{l}D\left(0;5;0\right)\\ D\left(0;-4;0\right)\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}D\left(0;8;0\right)\\ D\left(0;-7;0\right)\end{array}\right.\) |
![]() | \(D\left(0;-7;0\right)\) |
![]() | \(D\left(0;8;0\right)\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(-1;-2;4)\), \(B(-4;-2;0)\), \(C(3;-2;1)\) và \(D(1;1;1)\). Độ dài đường cao của tứ diện kẻ từ đỉnh \(D\) bằng
![]() | \(3\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | \(\dfrac{1}{2}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(1;0;0)\), \(B(0;1;0)\), \(C(0;0;1)\), \(D(-2;1;-1)\). Tính thể tích của tứ diện.
![]() | \(V=1\) |
![]() | \(V=2\) |
![]() | \(V=\dfrac{1}{2}\) |
![]() | \(V=\dfrac{1}{3}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
![]() | \(\dfrac{\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{7}\) |
![]() | \(\dfrac{4\sqrt{14}}{7}\) |
Trong không gian $Oxyz$, cho tứ diện $ABCD$ có $A(2;0;0)$, $B(-2;3;0)$, $C(2;3;0)$. $D$ nằm trên trục $Oz$ sao cho có thể tích khối tứ diện $ABCD$ bằng $128$. Tính tổng cao độ các vị trí điểm $D$.
![]() | $32$ |
![]() | $128$ |
![]() | $0$ |
![]() | $64$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
![]() | $(4;-1;6)$ |
![]() | $(4;6;1)$ |
![]() | $(-4;6;-1)$ |
![]() | $(4;1;6)$ |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(3;-2;1)\), \(B(-4;0;3)\), \(C(1;4;-3)\), \(D(2;3;5)\). Phương trình mặt phẳng chứa \(AC\) và song song với \(BD\) là
![]() | \(12x-10y+21z-35=0\) |
![]() | \(12x+10y-21z+35=0\) |
![]() | \(12x+10y+21z+35=0\) |
![]() | \(12x-10y-21z-35=0\) |
Trong không gian \(Oxyz\), cho hình hộp \(ABCD.EFGH\) có \(A(1;1;-6)\), \(B(0;0;-2)\), \(C(-5;1;2)\), \(H(2;1;-1)\). Tính thể tích của khối hộp đã cho.
![]() | \(V=36\) |
![]() | \(V=38\) |
![]() | \(V=\dfrac{19}{3}\) |
![]() | \(V=42\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(1;0;0)\), \(B(0;1;0)\), \(C(0;0;1)\) và \(D(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
![]() | \(A,\,B,\,C,\,D\) lập thành một tứ diện |
![]() | \(A,\,B,\,D\) lập thành một tam giác đều |
![]() | \(AB\bot CD\) |
![]() | \(B,\,C,\,D\) tạo thành một tam giác vuông |
Trong không gian \(Oxyz\), cho bốn điểm \(A(-2;2;0)\), \(B(2;4;0)\), \(C(4;0;0)\), \(D(0;-2;0)\). Mệnh đề nào sau đây là đúng?
![]() | \(A,\,B,\,C,\,D\) lập thành một tứ diện |
![]() | \(A,\,B,\,C,\,D\) lập thành hình vuông |
![]() | \(A,\,B,\,C,\,D\) lập thành hình chóp đều |
![]() | \(S_{ABC}=S_{DBC}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?
![]() | \(\vec{a},\,\vec{c}\) cùng phương |
![]() | \(\vec{b},\,\vec{c}\) cùng phương |
![]() | \(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\) |
![]() | \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\neq\vec{0}\). Điều kiện cần và đủ để ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng là
![]() | \(\vec{a}\cdot\vec{b}\cdot\vec{c}=\vec{0}\) |
![]() | \(\left[\vec{a},\vec{b}\right]\cdot\vec{c}=0\) |
![]() | \(\vec{a},\,\vec{b},\,\vec{c}\) đôi một vuông góc |
![]() | \(\left|\vec{a}\right|=\left|\vec{b}\right|=\left|\vec{c}\right|\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u},\,\vec{v}\neq\vec{0}\). Phát biểu nào sau đây là sai?
![]() | \(\left|\left[\vec{u},\vec{v}\right]\right|=\left|\vec{u}\right|\cdot\left|\vec{v}\right|\cdot\cos\left(\vec{u},\vec{v}\right)\) |
![]() | \(\left[\vec{u},\vec{v}\right]\) vuông góc với \(\vec{u}\) và \(\vec{v}\) |
![]() | \(\left[\vec{u},\vec{v}\right]=\vec{0}\Leftrightarrow\vec{u},\,\vec{v}\) cùng phương |
![]() | \(\left[\vec{u},\vec{v}\right]\) là một vectơ |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Khẳng định nào sau đây sai?
![]() | \(\left|\left[\vec{a},\vec{b}\right]\right|=\left|\vec{a}\right|\cdot\left|\vec{b}\right|\cdot\sin\left(\vec{a},\vec{b}\right)\) |
![]() | \(\left[\vec{a},3\vec{b}\right]=3\left[\vec{a},\vec{b}\right]\) |
![]() | \(\left[2\vec{a},\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\) |
![]() | \(\left[2\vec{a},2\vec{b}\right]=2\left[\vec{a},\vec{b}\right]\) |
Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là
![]() | $x=0$ |
![]() | $z=0$ |
![]() | $x+y+z=0$ |
![]() | $y=0$ |
Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là
![]() | $(0;-4;3)$ |
![]() | $(-3;0;4)$ |
![]() | $(0;3;4)$ |
![]() | $(0;-3;4)$ |
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
![]() | $5$ |
![]() | $\dfrac{1}{3}$ |
![]() | $1$ |
![]() | $\dfrac{11}{3}$ |
Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |
![]() | $90^{\circ}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)$ tâm $I(1;3;9)$ bán kính bằng $3$. Gọi $M,\,N$ là hai điểm lần lượt thuộc hai trục $Ox$, $Oz$ sao cho đường thẳng $MN$ tiếp xúc với $(S)$, đồng thời mặt cầu ngoại tiếp tứ diện $OIMN$ có bán kính bằng $\dfrac{13}{2}$. Gọi $A$ là tiếp điểm của $MN$ và $(S)$, giá trị $AM\cdot AN$ bằng
![]() | $39$ |
![]() | $12\sqrt{3}$ |
![]() | $18$ |
![]() | $28\sqrt{3}$ |
Trong không gian $Oxyz$, mặt phẳng $(Oxz)$ có phương trình là
![]() | $x+z=0$ |
![]() | $x+y+z=0$ |
![]() | $y=0$ |
![]() | $x-y+z=0$ |