Ngân hàng bài tập

Bài tập tương tự

A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(-2;0;3)\), \(\vec{b}=(0;4;-1)\) và \(\vec{c}=\left(m-2;m^2;5\right)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.

\(m=-2\) hoặc \(m=-4\)
\(m=2\) hoặc \(m=4\)
\(m=1\) hoặc \(m=6\)
\(m=2\) hoặc \(m=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;m;2)\), \(\vec{b}=(m+1;2;1)\) và \(\vec{c}=(0;m-2;2)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.

\(m=\dfrac{2}{5}\)
\(m=\dfrac{5}{2}\)
\(m=-2\)
\(m=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{u}=(2;-1;1)\), \(\vec{v}=(m;3;-1)\) và \(\vec{w}=(1;2;1)\). Tìm giá trị của \(m\) để \(\vec{u},\,\vec{v},\,\vec{w}\) đồng phẳng.

\(m=-8\)
\(m=4\)
\(m=-\dfrac{7}{3}\)
\(m=-\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;2;-1)\), \(\vec{b}=(3;-1;0)\), \(\vec{c}=(1;-5;2)\). Khẳng định nào sau đây là đúng?

\(\vec{a},\,\vec{b}\) cùng phương
\(\vec{a},\,\vec{b},\,\vec{c}\) không đồng phẳng
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
\(\vec{a}\bot\vec{b}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?

\(\vec{a},\,\vec{c}\) cùng phương
\(\vec{b},\,\vec{c}\) cùng phương
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), bộ ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\) nào sau đây đồng phẳng?

\(\vec{a}=(1;-1;1),\,\vec{b}=(0;1;2),\,\vec{c}=(4;2;3)\)
\(\vec{a}=(4;3;4),\,\vec{b}=(2;-1;2),\,\vec{c}=(1;2;1)\)
\(\vec{a}=(2;1;0),\,\vec{b}=(1;-1;2),\,\vec{c}=(2;2;-1)\)
\(\vec{a}=(1;-7;9),\,\vec{b}=(3;-6;1),\,\vec{c}=(2;1;-7)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\neq\vec{0}\). Điều kiện cần và đủ để ba vectơ \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng là

\(\vec{a}\cdot\vec{b}\cdot\vec{c}=\vec{0}\)
\(\left[\vec{a},\vec{b}\right]\cdot\vec{c}=0\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đôi một vuông góc
\(\left|\vec{a}\right|=\left|\vec{b}\right|=\left|\vec{c}\right|\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho các vectơ \(\vec{a}=(m;1;0)\), \(\vec{b}=(2;m-1;1)\), \(\vec{c}=(1;m+1;1)\). Tìm \(m\) để ba vectơ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) đồng phẳng.

\(m=\dfrac{3}{2}\)
\(m=-2\)
\(m=-\dfrac{1}{2}\)
\(m=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là

$(-1;4;-5)$
$(1;-4;5)$
$(3;0;1)$
$(3;0;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;3;-2)$ và $\overrightarrow{v}=(2;1;-1)$. Tọa độ của vectơ $\overrightarrow{u}-\overrightarrow{v}$ là

$(3;4;-3)$
$(-1;2;-3)$
$(-1;2;-1)$
$(1;-2;1)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;3\right)\), \(B\left(4;0;1\right)\) và \(C\left(-10;5;3\right)\). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng \(\left(ABC\right)\)?

\(\overrightarrow{n_1}=\left(1;2;0\right)\)
\(\overrightarrow{n_2}=\left(1;2;2\right)\)
\(\overrightarrow{n_3}=\left(1;8;2\right)\)
\(\overrightarrow{n_4}=\left(1;-2;2\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).

\(T=3\)
\(T=6\)
\(T=0\)
\(T=9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian với hệ tọa độ \(Oxyz\), cho hai vectơ \(\overrightarrow{a}=(1;-2;5)\) và \(\overrightarrow{b}=(-2;4;2)\). Tìm tọa độ của vectơ \(\overrightarrow{a}-\overrightarrow{b}\).

\(\overrightarrow{a}-\overrightarrow{b}=(3;-2;3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(3;-6;3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(-3;6;-3)\)
\(\overrightarrow{a}-\overrightarrow{b}=(1;-2;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow{a}=(1;-1;3)\), \(\overrightarrow{b}=(2;0;-1)\). Tìm tọa độ véctơ \(\overrightarrow{u}=2\overrightarrow{a}-3\overrightarrow{b}\).

\(\overrightarrow{u}=\left(1;3;-11\right)\)
\(\overrightarrow{u}=\left(4;2;-9\right)\)
\(\overrightarrow{u}=\left(-4;-5;9\right)\)
\(\overrightarrow{u}=\left(-4;-2;9\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:

\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\)
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.

\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\)
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\)
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\)
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?

Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\)
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\)
\(\vec{m}\cdot\vec{n}=-1\)
\(\vec{m}\) và \(\vec{n}\) không cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho bốn điểm \(A(1;0;0)\), \(B(0;1;0)\), \(C(0;0;1)\) và \(D(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?

\(A,\,B,\,C,\,D\) lập thành một tứ diện
\(A,\,B,\,D\) lập thành một tam giác đều
\(AB\bot CD\)
\(B,\,C,\,D\) tạo thành một tam giác vuông
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho bốn điểm \(A(-2;2;0)\), \(B(2;4;0)\), \(C(4;0;0)\), \(D(0;-2;0)\). Mệnh đề nào sau đây là đúng?

\(A,\,B,\,C,\,D\) lập thành một tứ diện
\(A,\,B,\,C,\,D\) lập thành hình vuông
\(A,\,B,\,C,\,D\) lập thành hình chóp đều
\(S_{ABC}=S_{DBC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự