Trong không gian $Oxyz$, cho tam giác $ABC$ với $A(2;2;2)$, $B(0;1;1)$ và $C(-1;-2;-3)$. Tính diện tích $S$ của tam giác $ABC$.
![]() | $\dfrac{5\sqrt{3}}{2}$ |
![]() | $5\sqrt{2}$ |
![]() | $5\sqrt{3}$ |
![]() | $\dfrac{5\sqrt{2}}{2}$ |
Trong không gian \(Oxyz\), cho bốn điểm \(A(-2;2;0)\), \(B(2;4;0)\), \(C(4;0;0)\), \(D(0;-2;0)\). Mệnh đề nào sau đây là đúng?
![]() | \(A,\,B,\,C,\,D\) lập thành một tứ diện |
![]() | \(A,\,B,\,C,\,D\) lập thành hình vuông |
![]() | \(A,\,B,\,C,\,D\) lập thành hình chóp đều |
![]() | \(S_{ABC}=S_{DBC}\) |
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A(1;0;0)\), \(B(0;0;1)\), \(C(2;1;1)\). Độ dài đường cao kẻ từ \(A\) của \(\triangle ABC\) bằng
![]() | \(\dfrac{\sqrt{30}}{5}\) |
![]() | \(\dfrac{\sqrt{15}}{5}\) |
![]() | \(2\sqrt{5}\) |
![]() | \(3\sqrt{6}\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{-1}\) và hai điểm \(A(-1;3;1)\), \(B(0;2;-1)\). Gọi \(C(m;n;p)\) là điểm thuộc \(d\) sao cho diện tích của tam giác \(ABC\) bằng \(2\sqrt{2}\). Giá trị của \(T=m+n+p\) bằng
![]() | \(T=0\) |
![]() | \(T=-1\) |
![]() | \(T=-2\) |
![]() | \(T=3\) |
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0)\), \(B(0;0;1)\), \(C(2;1;1)\). Diện tích của tam giác \(ABC\) bằng
![]() | \(\dfrac{\sqrt{6}}{2}\) |
![]() | \(\dfrac{\sqrt{5}}{2}\) |
![]() | \(\dfrac{\sqrt{10}}{2}\) |
![]() | \(\dfrac{\sqrt{15}}{2}\) |
Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng
![]() | $2\sqrt{2}$ |
![]() | $2+2\sqrt{2}$ |
![]() | $-2\sqrt{2}$ |
![]() | $4+\sqrt{2}$ |
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
![]() | $5$ |
![]() | $\dfrac{1}{3}$ |
![]() | $1$ |
![]() | $\dfrac{11}{3}$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
![]() | $x+y-2z-4=0$ |
![]() | $2x-y-3z-2=0$ |
![]() | $x+y+z-1=0$ |
![]() | $2x-y-z-2=0$ |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-4=0\) cắt mặt phẳng \(\left(P\right)\colon x+y-z+4=0\) theo giao tuyến là đường tròn \(\left(\mathscr{C}\right)\). Tính diện tích \(S\) của hình tròn \(\left(\mathscr{C}\right)\).
![]() | \(S=\dfrac{2\pi\sqrt{78}}{3}\) |
![]() | \(S=2\pi\sqrt{6}\) |
![]() | \(S=6\pi\) |
![]() | \(S=\dfrac{26\pi}{3}\) |
Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;3\right)\), \(B\left(4;0;1\right)\) và \(C\left(-10;5;3\right)\). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng \(\left(ABC\right)\)?
![]() | \(\overrightarrow{n_1}=\left(1;2;0\right)\) |
![]() | \(\overrightarrow{n_2}=\left(1;2;2\right)\) |
![]() | \(\overrightarrow{n_3}=\left(1;8;2\right)\) |
![]() | \(\overrightarrow{n_4}=\left(1;-2;2\right)\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left(2;1;-1\right)\), \(B\left(3;0;1\right)\), \(C\left(2;-1;3\right)\) và đỉnh \(D\) nằm trên tia \(Oy\). Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
![]() | \(\left[\begin{array}{l}D\left(0;5;0\right)\\ D\left(0;-4;0\right)\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}D\left(0;8;0\right)\\ D\left(0;-7;0\right)\end{array}\right.\) |
![]() | \(D\left(0;-7;0\right)\) |
![]() | \(D\left(0;8;0\right)\) |
Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
![]() | \(\dfrac{7\pi}{4}\) |
![]() | \(\dfrac{15\pi}{4}\) |
![]() | \(\dfrac{9\pi}{4}\) |
![]() | \(\dfrac{11\pi}{4}\) |
Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?
![]() | \(2x+y-1=0\) |
![]() | \(y+2z+3=0\) |
![]() | \(2x-y-7=0\) |
![]() | \(x+2y-z+4=0\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
![]() | \(-2\) |
![]() | \(-3\) |
![]() | \(0\) |
![]() | \(3\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+2y+z-4=0\) và đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z+2}{3}\). Đường thẳng \(\Delta\) nằm trong mặt phẳng \((P)\) đồng thời cắt và vuông góc với đường thẳng \(d\) có phương trình là
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{3}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{-3}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{-3}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(3;-2;1)\), \(B(-4;0;3)\), \(C(1;4;-3)\), \(D(2;3;5)\). Phương trình mặt phẳng chứa \(AC\) và song song với \(BD\) là
![]() | \(12x-10y+21z-35=0\) |
![]() | \(12x+10y-21z+35=0\) |
![]() | \(12x+10y+21z+35=0\) |
![]() | \(12x-10y-21z-35=0\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
![]() | Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) |
![]() | \(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) |
![]() | \(\vec{m}\cdot\vec{n}=-1\) |
![]() | \(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x+my+(m-1)z+1=0\) và \((Q)\colon x+y+2z=0\). Tập hợp tất cả các giá trị \(m\) để hai mặt phẳng này không song song là
![]() | \((0;+\infty)\) |
![]() | \(\mathbb{R}\setminus\{-1;1;2\}\) |
![]() | \((-\infty;3)\) |
![]() | \(\mathbb{R}\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(3;-2;-2)\), \(B(3;2;0)\), \(C(0;2;1)\) và \(D(-1;1;2)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\) có bán kính bằng
![]() | \(9\) |
![]() | \(5\) |
![]() | \(\sqrt{14}\) |
![]() | \(\sqrt{13}\) |
Trong không gian \(Oxyz\), cho các điểm \(A(1;1;3)\), \(B(-1;3;2)\), \(C(-1;2;3)\). Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\).
![]() | \(\sqrt{3}\) |
![]() | \(3\) |
![]() | \(\dfrac{\sqrt{3}}{2}\) |
![]() | \(\dfrac{3}{2}\) |