Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left(2;1;-1\right)\), \(B\left(3;0;1\right)\), \(C\left(2;-1;3\right)\) và đỉnh \(D\) nằm trên tia \(Oy\). Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
\(\left[\begin{array}{l}D\left(0;5;0\right)\\ D\left(0;-4;0\right)\end{array}\right.\) | |
\(\left[\begin{array}{l}D\left(0;8;0\right)\\ D\left(0;-7;0\right)\end{array}\right.\) | |
\(D\left(0;-7;0\right)\) | |
\(D\left(0;8;0\right)\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(-1;-2;4)\), \(B(-4;-2;0)\), \(C(3;-2;1)\) và \(D(1;1;1)\). Độ dài đường cao của tứ diện kẻ từ đỉnh \(D\) bằng
\(3\) | |
\(1\) | |
\(2\) | |
\(\dfrac{1}{2}\) |
Trong không gian \(Oxyz\), thể tích khối tứ diện \(ABCD\) được cho bởi công thức
\(V=\dfrac{1}{6}\left|\left[\overrightarrow{CA},\overrightarrow{CB}\right]\cdot\overrightarrow{AB}\right|\) | |
\(V=\dfrac{1}{6}\left|\left[\overrightarrow{AB},\overrightarrow{AC}\right]\cdot\overrightarrow{BC}\right|\) | |
\(V=\dfrac{1}{6}\left|\left[\overrightarrow{BA},\overrightarrow{BC}\right]\cdot\overrightarrow{AC}\right|\) | |
\(V=\dfrac{1}{6}\left|\left[\overrightarrow{DA},\overrightarrow{DB}\right]\cdot\overrightarrow{DC}\right|\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
\(\dfrac{\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{7}\) | |
\(\dfrac{4\sqrt{14}}{7}\) |
Trong không gian $Oxyz$, cho tứ diện $ABCD$ có $A(2;0;0)$, $B(-2;3;0)$, $C(2;3;0)$. $D$ nằm trên trục $Oz$ sao cho có thể tích khối tứ diện $ABCD$ bằng $128$. Tính tổng cao độ các vị trí điểm $D$.
$32$ | |
$128$ | |
$0$ | |
$64$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
$(4;-1;6)$ | |
$(4;6;1)$ | |
$(-4;6;-1)$ | |
$(4;1;6)$ |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(3;-2;1)\), \(B(-4;0;3)\), \(C(1;4;-3)\), \(D(2;3;5)\). Phương trình mặt phẳng chứa \(AC\) và song song với \(BD\) là
\(12x-10y+21z-35=0\) | |
\(12x+10y-21z+35=0\) | |
\(12x+10y+21z+35=0\) | |
\(12x-10y-21z-35=0\) |
Trong không gian \(Oxyz\), cho hình hộp \(ABCD.EFGH\) có \(A(1;1;-6)\), \(B(0;0;-2)\), \(C(-5;1;2)\), \(H(2;1;-1)\). Tính thể tích của khối hộp đã cho.
\(V=36\) | |
\(V=38\) | |
\(V=\dfrac{19}{3}\) | |
\(V=42\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(1;0;0)\), \(B(0;1;0)\), \(C(0;0;1)\) và \(D(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
\(A,\,B,\,C,\,D\) lập thành một tứ diện | |
\(A,\,B,\,D\) lập thành một tam giác đều | |
\(AB\bot CD\) | |
\(B,\,C,\,D\) tạo thành một tam giác vuông |
Trong không gian \(Oxyz\), cho bốn điểm \(A(-2;2;0)\), \(B(2;4;0)\), \(C(4;0;0)\), \(D(0;-2;0)\). Mệnh đề nào sau đây là đúng?
\(A,\,B,\,C,\,D\) lập thành một tứ diện | |
\(A,\,B,\,C,\,D\) lập thành hình vuông | |
\(A,\,B,\,C,\,D\) lập thành hình chóp đều | |
\(S_{ABC}=S_{DBC}\) |
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
$5$ | |
$\dfrac{1}{3}$ | |
$1$ | |
$\dfrac{11}{3}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)$ tâm $I(1;3;9)$ bán kính bằng $3$. Gọi $M,\,N$ là hai điểm lần lượt thuộc hai trục $Ox$, $Oz$ sao cho đường thẳng $MN$ tiếp xúc với $(S)$, đồng thời mặt cầu ngoại tiếp tứ diện $OIMN$ có bán kính bằng $\dfrac{13}{2}$. Gọi $A$ là tiếp điểm của $MN$ và $(S)$, giá trị $AM\cdot AN$ bằng
$39$ | |
$12\sqrt{3}$ | |
$18$ | |
$28\sqrt{3}$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
$x+y-2z-4=0$ | |
$2x-y-3z-2=0$ | |
$x+y+z-1=0$ | |
$2x-y-z-2=0$ |
Trong không gian $Oxyz$, cho tam giác $ABC$ với $A(2;2;2)$, $B(0;1;1)$ và $C(-1;-2;-3)$. Tính diện tích $S$ của tam giác $ABC$.
$\dfrac{5\sqrt{3}}{2}$ | |
$5\sqrt{2}$ | |
$5\sqrt{3}$ | |
$\dfrac{5\sqrt{2}}{2}$ |
Trong không gian $Oxyz$ cho lăng trụ $ABC.A'B'C'$ có phương trình các mặt phẳng $(ABC)$ và $\left(A'B'C'\right)$ lần lượt là $x-2y+z+2=0$ và $x-2y+z+4=0$. Biết tam giác $ABC$ có diện tích bằng $6$. Thể tích của khối lăng trụ đó bằng
$6\sqrt{6}$ | |
$2\sqrt{6}$ | |
$\dfrac{\sqrt{6}}{3}$ | |
$\dfrac{4\sqrt{6}}{3}$ |
Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;3\right)\), \(B\left(4;0;1\right)\) và \(C\left(-10;5;3\right)\). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng \(\left(ABC\right)\)?
\(\overrightarrow{n_1}=\left(1;2;0\right)\) | |
\(\overrightarrow{n_2}=\left(1;2;2\right)\) | |
\(\overrightarrow{n_3}=\left(1;8;2\right)\) | |
\(\overrightarrow{n_4}=\left(1;-2;2\right)\) |
Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?
\(2x+y-1=0\) | |
\(y+2z+3=0\) | |
\(2x-y-7=0\) | |
\(x+2y-z+4=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+2y+z-4=0\) và đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z+2}{3}\). Đường thẳng \(\Delta\) nằm trong mặt phẳng \((P)\) đồng thời cắt và vuông góc với đường thẳng \(d\) có phương trình là
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{3}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{-3}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{-3}\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x+my+(m-1)z+1=0\) và \((Q)\colon x+y+2z=0\). Tập hợp tất cả các giá trị \(m\) để hai mặt phẳng này không song song là
\((0;+\infty)\) | |
\(\mathbb{R}\setminus\{-1;1;2\}\) | |
\((-\infty;3)\) | |
\(\mathbb{R}\) |