Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left(2;1;-1\right)\), \(B\left(3;0;1\right)\), \(C\left(2;-1;3\right)\) và đỉnh \(D\) nằm trên tia \(Oy\). Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
![]() | \(\left[\begin{array}{l}D\left(0;5;0\right)\\ D\left(0;-4;0\right)\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}D\left(0;8;0\right)\\ D\left(0;-7;0\right)\end{array}\right.\) |
![]() | \(D\left(0;-7;0\right)\) |
![]() | \(D\left(0;8;0\right)\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(-1;-2;4)\), \(B(-4;-2;0)\), \(C(3;-2;1)\) và \(D(1;1;1)\). Độ dài đường cao của tứ diện kẻ từ đỉnh \(D\) bằng
![]() | \(3\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | \(\dfrac{1}{2}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(1;0;0)\), \(B(0;1;0)\), \(C(0;0;1)\), \(D(-2;1;-1)\). Tính thể tích của tứ diện.
![]() | \(V=1\) |
![]() | \(V=2\) |
![]() | \(V=\dfrac{1}{2}\) |
![]() | \(V=\dfrac{1}{3}\) |
Trong không gian \(Oxyz\), thể tích khối tứ diện \(ABCD\) được cho bởi công thức
![]() | \(V=\dfrac{1}{6}\left|\left[\overrightarrow{CA},\overrightarrow{CB}\right]\cdot\overrightarrow{AB}\right|\) |
![]() | \(V=\dfrac{1}{6}\left|\left[\overrightarrow{AB},\overrightarrow{AC}\right]\cdot\overrightarrow{BC}\right|\) |
![]() | \(V=\dfrac{1}{6}\left|\left[\overrightarrow{BA},\overrightarrow{BC}\right]\cdot\overrightarrow{AC}\right|\) |
![]() | \(V=\dfrac{1}{6}\left|\left[\overrightarrow{DA},\overrightarrow{DB}\right]\cdot\overrightarrow{DC}\right|\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
![]() | \(\dfrac{\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{7}\) |
![]() | \(\dfrac{4\sqrt{14}}{7}\) |
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
![]() | $5$ |
![]() | $\dfrac{1}{3}$ |
![]() | $1$ |
![]() | $\dfrac{11}{3}$ |
Trong không gian $Oxyz$, cho tứ diện $ABCD$ có $A(2;0;0)$, $B(-2;3;0)$, $C(2;3;0)$. $D$ nằm trên trục $Oz$ sao cho có thể tích khối tứ diện $ABCD$ bằng $128$. Tính tổng cao độ các vị trí điểm $D$.
![]() | $32$ |
![]() | $128$ |
![]() | $0$ |
![]() | $64$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
![]() | $x+y-2z-4=0$ |
![]() | $2x-y-3z-2=0$ |
![]() | $x+y+z-1=0$ |
![]() | $2x-y-z-2=0$ |
Trong không gian $Oxyz$, cho tam giác $ABC$ với $A(2;2;2)$, $B(0;1;1)$ và $C(-1;-2;-3)$. Tính diện tích $S$ của tam giác $ABC$.
![]() | $\dfrac{5\sqrt{3}}{2}$ |
![]() | $5\sqrt{2}$ |
![]() | $5\sqrt{3}$ |
![]() | $\dfrac{5\sqrt{2}}{2}$ |
Trong không gian $Oxyz$ cho lăng trụ $ABC.A'B'C'$ có phương trình các mặt phẳng $(ABC)$ và $\left(A'B'C'\right)$ lần lượt là $x-2y+z+2=0$ và $x-2y+z+4=0$. Biết tam giác $ABC$ có diện tích bằng $6$. Thể tích của khối lăng trụ đó bằng
![]() | $6\sqrt{6}$ |
![]() | $2\sqrt{6}$ |
![]() | $\dfrac{\sqrt{6}}{3}$ |
![]() | $\dfrac{4\sqrt{6}}{3}$ |
Trong không gian $Oxyz$, cho hình hộp $ABCD.A'B'C'D'$ có $A(1;0;1)$, $B(2;1;2)$, $D(1;-1;1)$ và $A'(1;1;-1)$. Giá trị của $\cos\left(\overrightarrow{AC'},\overrightarrow{B'D'}\right)$ bằng
![]() | $\dfrac{\sqrt{3}}{3}$ |
![]() | $\dfrac{\sqrt{2}}{3}$ |
![]() | $-\dfrac{\sqrt{3}}{3}$ |
![]() | $-\dfrac{\sqrt{2}}{3}$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
![]() | $(4;-1;6)$ |
![]() | $(4;6;1)$ |
![]() | $(-4;6;-1)$ |
![]() | $(4;1;6)$ |
Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;3\right)\), \(B\left(4;0;1\right)\) và \(C\left(-10;5;3\right)\). Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng \(\left(ABC\right)\)?
![]() | \(\overrightarrow{n_1}=\left(1;2;0\right)\) |
![]() | \(\overrightarrow{n_2}=\left(1;2;2\right)\) |
![]() | \(\overrightarrow{n_3}=\left(1;8;2\right)\) |
![]() | \(\overrightarrow{n_4}=\left(1;-2;2\right)\) |
Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?
![]() | \(2x+y-1=0\) |
![]() | \(y+2z+3=0\) |
![]() | \(2x-y-7=0\) |
![]() | \(x+2y-z+4=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+2y+z-4=0\) và đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z+2}{3}\). Đường thẳng \(\Delta\) nằm trong mặt phẳng \((P)\) đồng thời cắt và vuông góc với đường thẳng \(d\) có phương trình là
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{3}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{-3}\) |
![]() | \(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{-3}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(3;-2;1)\), \(B(-4;0;3)\), \(C(1;4;-3)\), \(D(2;3;5)\). Phương trình mặt phẳng chứa \(AC\) và song song với \(BD\) là
![]() | \(12x-10y+21z-35=0\) |
![]() | \(12x+10y-21z+35=0\) |
![]() | \(12x+10y+21z+35=0\) |
![]() | \(12x-10y-21z-35=0\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
![]() | Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) |
![]() | \(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) |
![]() | \(\vec{m}\cdot\vec{n}=-1\) |
![]() | \(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x+my+(m-1)z+1=0\) và \((Q)\colon x+y+2z=0\). Tập hợp tất cả các giá trị \(m\) để hai mặt phẳng này không song song là
![]() | \((0;+\infty)\) |
![]() | \(\mathbb{R}\setminus\{-1;1;2\}\) |
![]() | \((-\infty;3)\) |
![]() | \(\mathbb{R}\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(3;-2;-2)\), \(B(3;2;0)\), \(C(0;2;1)\) và \(D(-1;1;2)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\) có bán kính bằng
![]() | \(9\) |
![]() | \(5\) |
![]() | \(\sqrt{14}\) |
![]() | \(\sqrt{13}\) |
Trong không gian \(Oxyz\), cho các điểm \(A(1;1;3)\), \(B(-1;3;2)\), \(C(-1;2;3)\). Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\).
![]() | \(\sqrt{3}\) |
![]() | \(3\) |
![]() | \(\dfrac{\sqrt{3}}{2}\) |
![]() | \(\dfrac{3}{2}\) |