Cho tam giác \(ABC\) có độ dài ba cạnh là \(AB=2\), \(BC=5\), \(CA=6\). Tính độ dài đường trung tuyến \(AM\).
![]() | \(\dfrac{\sqrt{15}}{2}\) |
![]() | \(\dfrac{\sqrt{55}}{2}\) |
![]() | \(\dfrac{\sqrt{110}}{2}\) |
![]() | \(\sqrt{55}\) |
Tam giác \(ABC\) vuông cân tại \(A\) có \(AB=AC=a\). Đường trung tuyến \(BM\) có độ dài là
![]() | \(\dfrac{3a}{2}\) |
![]() | \(a\sqrt{2}\) |
![]() | \(a\sqrt{3}\) |
![]() | \(\dfrac{a\sqrt{5}}{2}\) |
Tam giác \(ABC\) có \(a=2\sqrt{2}\), \(b=2\sqrt{3}\), \(c=2\). Độ dài trung tuyến \(m_b\) bằng
![]() | \(\sqrt{3}\) |
![]() | \(5\) |
![]() | \(3\) |
![]() | \(2\) |
Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:
![]() | \(a^2=b^2+c^2-2bc\cos A\) |
![]() | \(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\) |
![]() | \(S=\dfrac{1}{2}ab\cos C\) |
![]() | \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\) |
Tam giác \(ABC\) vuông tại \(A\) có \(AC=6\)cm, \(BC=10\)cm. Đường tròn nội tiếp tam giác có bán kính \(r\) bằng
![]() | \(1\)cm |
![]() | \(\sqrt{2}\)cm |
![]() | \(2\)cm |
![]() | \(3\)cm |
Tam giác \(ABC\) có \(AB=8\)cm, \(BC=10\)cm, \(CA=6\)cm. Đường trung tuyến \(AM\) của tam giác đó có độ dài bằng
![]() | \(4\)cm |
![]() | \(5\)cm |
![]() | \(6\)cm |
![]() | \(7\)cm |
Trong không gian, cho tam giác $ABC$ vuông tại $A$, $AB=2a$, $AC=3a$. Khi quay tam giác $ABC$ quanh cạnh $AB$ thì đường gấp khúc $ACB$ tạo thành một hình nón. Độ dài đường sinh của hình nón đó là
![]() | $a\sqrt{13}$ |
![]() | $a\sqrt{5}$ |
![]() | $2a$ |
![]() | $3a$ |
Cho tam giác $ABC$ vuông tại $A$. Khi quay đường gấp khúc $BCA$ quanh cạnh $AB$ thì tạo thành hình nào dưới đây?
![]() | Hình trụ |
![]() | Hình cầu |
![]() | Hình chóp |
![]() | Hình nón |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
![]() | $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ |
![]() | $\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho tam giác $ABC$ với $A(1;-3;4)$, $B(-2;-5;-7)$, $C(6;-3;-1)$. Viết phương trình đường trung tuyến $AM$ của tam giác $ABC$.
Cho hàm số $y=x^4-2(m+1)x^2+m^2$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành một tam giác vuông.
![]() | $m=-1$ |
![]() | $m=0$ |
![]() | $m=1$ |
![]() | $m>-1$ |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng
![]() | $\sqrt2a$ |
![]() | $2a$ |
![]() | $a$ |
![]() | $2\sqrt2a$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon4x-3y-1=0$ và hai điểm $A(3;-3;-1)$, $B(9;5;-1)$. Gọi $M$ là điểm thay đổi nằm trên mặt phẳng $(P)$ sao cho tam giác $ABM$ vuông tại $M$. Gọi $S_1,\,S_2$ tương ứng là giá trị nhỏ nhất và giá trị lớn nhất của diện tích tam giác $MAB$. Tính giá trị biểu thức $T=S_2-S_1$.
![]() | $T=5$ |
![]() | $T=45$ |
![]() | $T=1$ |
![]() | $T=10$ |
Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
![]() | $r=\dfrac{\sqrt{14}}{7}$ |
![]() | $r=\dfrac{2\sqrt{14}}{7}$ |
![]() | $r=2\sqrt{14}$ |
![]() | $r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
![]() | $a^2\dfrac{\sqrt{3}}{4}$ |
![]() | $a^2\dfrac{\sqrt{6}}{4}$ |
![]() | $a^2\dfrac{\sqrt{3}}{2}$ |
![]() | $a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
![]() | $R=\dfrac{85}{8}$cm |
![]() | $R=\dfrac{85}{2}$cm |
![]() | $R=\dfrac{7}{4}$cm |
![]() | $R=\dfrac{7}{2}$cm |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
![]() | $S=16\text{ cm}^2$ |
![]() | $S=24\text{ cm}^2$ |
![]() | $S=48\text{ cm}^2$ |
![]() | $S=84\text{ cm}^2$ |
Ba góc của một tam giác vuông tạo thành một cấp số cộng. Hai góc nhọn của tam giác đó có số đo là
![]() | \(20^\circ\) và \(70^\circ\) |
![]() | \(45^\circ\) và \(45^\circ\) |
![]() | \(20^\circ\) và \(45^\circ\) |
![]() | \(30^\circ\) và \(60^\circ\) |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
![]() | \(6,01\) |
![]() | \(5,73\) |
![]() | \(5,85\) |
![]() | \(4,57\) |
Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
![]() | \(7\) cm |
![]() | \(49\) cm |
![]() | \(11,4\) cm |
![]() | \(4,44\) cm |