Cho tam giác \(ABC\) có trọng tâm \(G\), điểm \(N\) được xác định bởi hệ thức \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}\). Hãy biểu diễn vectơ \(\overrightarrow{AC}\) theo hai vectơ \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\).
\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{4}{3}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) | |
\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\). Hãy phân tích vectơ \(\overrightarrow{AG}\) theo hai vectơ \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\).
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\) |
Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB=3MC\). Hãy phân tích vectơ \(AM\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\).
\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) | |
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\) |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{18}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{3}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{9}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ | |
$\dfrac{a^3\sqrt{7}}{18}$ |
Cắt hình nón $(X)$ bởi mặt phẳng đi qua đỉnh và tạo với mặt chứa đáy góc $60^\circ$, ta được thiết diện là tam giác đều cạnh $4a$. Diện tích xung quanh của $(X)$ bằng
$8\sqrt{7}\pi a^2$ | |
$4\sqrt{13}\pi a^2$ | |
$8\sqrt{13}\pi a^2$ | |
$4\sqrt{7}\pi a^2$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
$a^2\dfrac{\sqrt{3}}{4}$ | |
$a^2\dfrac{\sqrt{6}}{4}$ | |
$a^2\dfrac{\sqrt{3}}{2}$ | |
$a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
$S=16\text{ cm}^2$ | |
$S=24\text{ cm}^2$ | |
$S=48\text{ cm}^2$ | |
$S=84\text{ cm}^2$ |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
\(6,01\) | |
\(5,73\) | |
\(5,85\) | |
\(4,57\) |
Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là
\(S=\dfrac{a\cdot b\cdot c}{2R}\) | |
\(S=p\cdot R\) | |
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\) | |
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn \(\overrightarrow{MA}=\overrightarrow{MB}+\overrightarrow{MC}\). Khẳng định nào sau đây đúng?
\(A,\,B,\,C\) thẳng hàng | |
\(AM\) là phân giác trong của góc \(\widehat{BAC}\) | |
\(A,\,M\) và trọng tâm tam giác \(ABC\) thẳng hàng | |
\(\overrightarrow{AM}+\overrightarrow{BC}=\vec{0}\) |
Cho tam giác \(ABC\). Có bao nhiêu điểm \(M\) thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\)?
\(1\) | |
\(2\) | |
\(0\) | |
Vô số |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn $$2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}.$$Khẳng định nào sau đây là đúng?
\(M\equiv A\) | |
\(M\equiv B\) | |
\(M\equiv C\) | |
\(M\) là trọng tâm \(\triangle ABC\) |
Cho tam giác \(ABC\) đều cạnh \(a\). Độ dài vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) bằng
\(a\sqrt{3}\) | |
\(2a\) | |
\(a\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Cho tam giác \(ABC\) đều, cạnh \(a\), có \(I,\,J,\,K\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Tính giá trị của $$\left|\overrightarrow{AI}+\overrightarrow{BJ}+\overrightarrow{CK}\right|.$$
\(3a\) | |
\(\dfrac{3a\sqrt{3}}{2}\) | |
\(0\) | |
\(\dfrac{a\sqrt{3}}{2}\) |
Cho tam giác \(ABC\), trung tuyến \(AM\). Đẳng thức nào sau đây không đúng?
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) | |
\(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{CB}\) |
Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?
\(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?
\(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Mệnh đề nào sau đây sai?
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) | |
\(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) |
Cho tam giác \(ABC\). Gọi \(M,\,N\) lần lượt là trung điểm của \(AB\) và \(AC\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=2\overrightarrow{AM}\) | |
\(\overrightarrow{AC}=2\overrightarrow{NC}\) | |
\(\overrightarrow{CB}=-2\overrightarrow{MN}\) | |
\(\overrightarrow{CN}=-\dfrac{1}{2}\overrightarrow{AC}\) |