Cho mặt phẳng $(P)$ tiếp xúc với mặt cầu $S(O,R)$. Gọi $d$ là khoảng cách từ $O$ đến $(P)$. Khẳng định nào dưới đây đúng?
$d< R$ | |
$d>R$ | |
$d=R$ | |
$d=0$ |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-6x+4y-12=0\). Mặt phẳng nào sau đây cắt \((S)\) theo giao tuyến là một đường tròn có bán kính \(r=3\)?
\((\alpha)\colon x+y+z+\sqrt{3}=0\) | |
\((\beta)\colon2x+2y-z+12=0\) | |
\((\gamma)\colon4x-3y-z-4\sqrt{26}=0\) | |
\((\lambda)\colon3x-4y+5z-17+20\sqrt{2}=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x+y-3z+6=0\) và mặt cầu \((S)\colon(x-4)^2+(y+5)^2+(z+2)^2=25\). Biết \((P)\) cắt \((S)\) theo giao tuyến là một đường tròn bán kính \(r\). Chọn phát biểu đúng.
\(r=6\) | |
\(r=5\) | |
\(r=\sqrt{6}\) | |
\(r=\sqrt{5}\) |
Trong không gian \(Oxyz\), mặt cầu \((S)\) có tâm \(I(2;1;-1)\) và tiếp xúc với mặt phẳng \((\alpha)\colon2x-2y-z+3=0\). Bán kính của \((S)\) bằng
\(2\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{4}{3}\) | |
\(\dfrac{2}{9}\) |
Trong không gian \(Oxyz\), cho các điểm \(A(1;1;3)\), \(B(-1;3;2)\), \(C(-1;2;3)\). Tính khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\).
\(\sqrt{3}\) | |
\(3\) | |
\(\dfrac{\sqrt{3}}{2}\) | |
\(\dfrac{3}{2}\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng
$5$ | |
$\dfrac{1}{3}$ | |
$1$ | |
$\dfrac{11}{3}$ |
Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng
$\pi\sqrt{11}$ | |
$3\pi$ | |
$\pi\sqrt{15}$ | |
$\pi\sqrt{7}$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-4=0\) cắt mặt phẳng \(\left(P\right)\colon x+y-z+4=0\) theo giao tuyến là đường tròn \(\left(\mathscr{C}\right)\). Tính diện tích \(S\) của hình tròn \(\left(\mathscr{C}\right)\).
\(S=\dfrac{2\pi\sqrt{78}}{3}\) | |
\(S=2\pi\sqrt{6}\) | |
\(S=6\pi\) | |
\(S=\dfrac{26\pi}{3}\) |
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left(1;2;-1\right)\) và cắt mặt phẳng \(\left(P\right)\colon x-2y-2z-8=0\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\) | |
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
\(\dfrac{7\pi}{4}\) | |
\(\dfrac{15\pi}{4}\) | |
\(\dfrac{9\pi}{4}\) | |
\(\dfrac{11\pi}{4}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon x+y-2z+3=0\) và điểm \(I\left(1;1;0\right)\). Phương trình mặt cầu tâm \(I\) và tiếp xúc với \(\left(P\right)\) là
\(\left(x+1\right)^2+\left(y+1\right)^2+z^2=\dfrac{25}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{\sqrt{6}}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{25}{6}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+6z-11=0\) và mặt phẳng \((P)\colon x-2y+2z+1=0\). Gọi \((C)\) là đường tròn giao tuyến của \((P)\) và \((S)\). Tính chu vi đường tròn \((C)\).
\(10\pi\) | |
\(4\pi\) | |
\(6\pi\) | |
\(8\pi\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).
\(\dfrac{3\sqrt{3}}{2}\) | |
\(\dfrac{3\sqrt{2}}{3}\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{2}{3}\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x-2y+6z+14=0\) và mặt cầu \((S)\colon x^2+y^2+z^2-2(x+y+z)-22=0\). Khoảng cách từ tâm \(I\) của \((S)\) đến mặt phẳng \((P)\) bằng
\(1\) | |
\(2\) | |
\(3\) | |
\(4\) |