Trong không gian $Oxyz$, cho mặt phẳng $(\alpha)\colon2x-3y+z-3=0$. Mặt phẳng nào dưới đây song song với mặt phẳng $(\alpha)$?
![]() | $(\gamma)\colon2x-3y+z+2=0$ |
![]() | $(Q)\colon2x+3y+z+3=0$ |
![]() | $(P)\colon2x-3y+z-3=0$ |
![]() | $(\beta)\colon x-3y+z-3=0$ |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x+my+(m-1)z+1=0\) và \((Q)\colon x+y+2z=0\). Tập hợp tất cả các giá trị \(m\) để hai mặt phẳng này không song song là
![]() | \((0;+\infty)\) |
![]() | \(\mathbb{R}\setminus\{-1;1;2\}\) |
![]() | \((-\infty;3)\) |
![]() | \(\mathbb{R}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((\alpha)\colon x-y+nz-3=0\) và \((\beta)\colon2x+my+2z+6=0\). Với giá trị nào của \(m,\,n\) thì \((\alpha)\) và \((\beta)\) song song với nhau?
![]() | \(m=-2,\;n=1\) |
![]() | \(m=1,\;n=-2\) |
![]() | \(m=-\dfrac{1}{2},\;n=1\) |
![]() | \(m=1,\;n=-\dfrac{1}{2}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-3y+2z+1=0\) và \((Q)\colon(2m-1)x+m(1-2m)y+(2m-4)z+14=0\). Tìm \(m\) để \((P)\) và \((Q)\) vuông góc với nhau.
![]() | \(m=1\) hoặc \(m=-\dfrac{3}{2}\) |
![]() | \(m=-1\) hoặc \(m=-\dfrac{3}{2}\) |
![]() | \(m=2\) |
![]() | \(m=\dfrac{3}{2}\) |
Trong không gian \(Oxyz\), cho điểm \(A(-1;2;1)\) và hai mặt phẳng \((P)\colon2x+4y-6z-5=0\), \((Q)\colon x+2y-3z=0\). Mệnh đề nào sau đây là đúng?
![]() | Mặt phẳng \((Q)\) đi qua \(A\) và song song với \((P)\) |
![]() | Mặt phẳng \((Q)\) không đi qua \(A\) và song song với \((P)\) |
![]() | Mặt phẳng \((Q)\) đi qua \(A\) và không song song với \((P)\) |
![]() | Mặt phẳng \((Q)\) không đi qua \(A\) và không song song với \((P)\) |
Trong không gian \(Oxyz\), cặp mặt phẳng nào sau đây song song với nhau?
![]() | \((P)\colon2x-y+z-5=0\) và \((Q)\colon-3x+2y-2z+10\) |
![]() | \((R)\colon x-y+z-3=0\) và \((S)\colon2x-2y+2z+6=0\) |
![]() | \((T)\colon x-y+z=0\) và \((U)\colon\dfrac{x}{2}-\dfrac{y}{2}+\dfrac{z}{2}=0\) |
![]() | \((X)\colon3x-y+2z-3=0\) và \((Y)\colon6z-2y-6=0\) |
Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?
![]() | \(2x+y-1=0\) |
![]() | \(y+2z+3=0\) |
![]() | \(2x-y-7=0\) |
![]() | \(x+2y-z+4=0\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon2x+my-z+1=0\) và \((Q)\colon x+3y+(2m+3)z-2=0\). Giá trị của \(m\) để \((P)\bot(Q)\) là
![]() | \(m=-1\) |
![]() | \(m=1\) |
![]() | \(m=0\) |
![]() | \(m=2\) |
Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là
![]() | $3x-2y+z-11=0$ |
![]() | $2x-y+3z-14=0$ |
![]() | $3x-2y+z+11=0$ |
![]() | $2x-y+3z+14=0$ |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)\colon2x+my-z+1=0$ và $(Q)\colon x+3y+(2m+3)z-2=0$. Giá trị của $m$ để $(P)\perp(Q)$ là
![]() | $m=0$ |
![]() | $m=2$ |
![]() | $m=1$ |
![]() | $m=-1$ |
Trong không gian $Oxyz$, cho $I(2;1;1)$ và mặt phẳng $(P)\colon2x+y+2z+2=0$. Viết phương trình mặt phẳng qua điểm $I$ và song song với mặt phẳng $(P)$.
Trong không gian $Oxyz$, cho điểm $A(0;-3;2)$ và mặt phẳng $(P)\colon2x-y+3z+5=0$. Mặt phẳng đi qua $A$ và song song với $(P)$ có phương trình là
![]() | $2x-y+3z+9=0$ |
![]() | $2x+y+3z-3=0$ |
![]() | $2x+y+3z+3=0$ |
![]() | $2x-y+3z-9=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x+y-2z-2=0$. Mặt phẳng $(Q)$ đi qua $A(1;2;-1)$ và song song với $(P)$ có phương trình là
![]() | $2x+2y-4z+1=0$ |
![]() | $x+y-2z-5=0$ |
![]() | $2x+y+z-3=0$ |
![]() | $x+y-2z-3=0$ |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)\colon mx+2y+nz+1=0$ và $(Q)\colon x-my+nz+2=0$ $(m,\,n\in\mathbb{R})$ cùng vuông góc với mặt phẳng $(\alpha)\colon 4x-y-6z+3=0$. Tính $m+n$.
![]() | $m+n=0$ |
![]() | $m+n=2$ |
![]() | $m+n=1$ |
![]() | $m+n=3$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
![]() | $x+y-2z-4=0$ |
![]() | $2x-y-3z-2=0$ |
![]() | $x+y+z-1=0$ |
![]() | $2x-y-z-2=0$ |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
![]() | $cd=3$ |
![]() | $cd=0$ |
![]() | $cd=12$ |
![]() | $cd=6$ |
Trong không gian $Oxyz$, mặt phẳng đi qua điểm $M\left(-1;-2;5\right)$ và vuông góc với hai mặt phẳng $x+2y-3z+1=0$ và $2x-3y+z+1=0$ có phương trình là
![]() | $x+y+z-2=0$ |
![]() | $2x+y+z-1=0$ |
![]() | $x+y+z+2=0$ |
![]() | $x-y+z-6=0$ |
Trong không gian $Oxyz$, khoảng cách giữa hai mặt phẳng $(P)\colon x+2y+2z+11=0$ và $(Q)\colon x+2y+2z+2=0$ bằng
![]() | $3$ |
![]() | $1$ |
![]() | $9$ |
![]() | $6$ |
Trong không gian $Oxyz$, cho điểm $A(2;4;1)$ và mặt phẳng $(P)\colon x-3y+2z-5=0$. Phương trình của mặt phẳng đi qua điểm $A$ và song song với mặt phẳng $(P)$ là
![]() | $2x+4y+z-8=0$ |
![]() | $x-3y+2z+8=0$ |
![]() | $x-3y+2z-8=0$ |
![]() | $2x+4y+z+8=0$ |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)?
![]() | \(\left(Q\right)\colon2x+2y-z+10=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z+4=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z+8=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z-8=0\) |