Ngân hàng bài tập

Bài tập tương tự

C

Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=\cos{x}+2$, trục hoành và các đường thẳng $x=0$, $x=\dfrac{\pi}{4}$.

$S=\dfrac{\pi}{2}-\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{7}{10}$
$S=\dfrac{\pi}{2}+\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{\sqrt{2}}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng \((D)\) giới hạn bởi đồ thị hàm số \(y=\sqrt{x}\), hai đường thẳng \(x=1\), \(x=2\) và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay \((D)\) quanh trục hoành.

\(3\pi\)
\(\dfrac{3}{2}\)
\(\dfrac{3\pi}{2}\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích khối tròn xoay được tạo bởi hình phẳng giới hạn bởi ba đường \(y=\sqrt{x}\), \(y=2-x\) và \(y=0\) quanh trục \(Ox\).

\(\dfrac{3\pi}{2}\)
\(\dfrac{5\pi}{6}\)
\(\pi\)
\(\dfrac{2\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(D\) giới hạn bởi các đường \(y=\sqrt{x-1}\), trục hoành, \(x=2\) và \(x=5\) quanh trục \(Ox\) bằng

\(\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{2}^{5}\sqrt{x-1}\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
\(\pi^2\displaystyle\int\limits_{2}^{5}(x-1)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích \(V\) của vật tròn xoay tạo thành khi quay hình phẳng \((H)\) giới hạn bởi các đường \(y=x^2\) và \(y=\sqrt{x}\) quanh trục \(Ox\).

\(V=\dfrac{3\pi}{10}\)
\(V=\dfrac{\pi}{10}\)
\(V=\dfrac{7\pi}{10}\)
\(V=\dfrac{9\pi}{10}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \((H)\) là hình phẳng tạo bởi đồ thị hàm số \(y=\sqrt{x^3-x^2-2x}\) và trục hoành. Khi cho \((H)\) quay quanh trục hoành, ta được khối tròn xoay có thể tích là

\(\dfrac{13\pi}{6}\)
\(\dfrac{9\pi}{4}\)
\(\dfrac{5\pi}{12}\)
\(\dfrac{8\pi}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình phẳng giới hạn bởi đồ thị các hàm số \(y=\sqrt{x}\), đường thẳng \(y=2-x\) và trục hoành (phần gạch chéo trong hình vẽ).

Thể tích của khối tròn xoay sinh bởi hình phẳng trên khi quay quanh trục \(Ox\) bằng

\(\dfrac{5\pi}{4}\)
\(\dfrac{4\pi}{3}\)
\(\dfrac{7\pi}{6}\)
\(\dfrac{5\pi}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(V\) là thể tích của khối tròn xoay thu được khi quay hình thang cong giới hạn bởi đồ thị hàm số \(y=\sin x\), trục \(Ox\), trục \(Oy\) và đường thẳng \(x=\dfrac{\pi}{2}\) xung quanh trục \(Ox\). Mệnh đề nào dưới đây đúng?

\(V=\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\sin^2x\mathrm{\,d}x\)
\(V=\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\sin x\mathrm{\,d}x\)
\(V=\pi\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\sin^2x\mathrm{\,d}x\)
\(V=\pi\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\sin x\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Thể tích khối tròn xoay có được khi quay quanh trục \(Ox\) hình phẳng giới hạn bởi các đường \(y=\sqrt{x}\), \(y=0\), \(x=0\), \(x=1\) bằng

\(V=\dfrac{\pi}{2}\)
\(V=\dfrac{2\pi}{3}\)
\(V=\dfrac{2}{3}\)
\(V=\dfrac{1}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là

$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$
$\{k2\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.

$\dfrac{7\pi}{6}+1$
$\dfrac{9\pi}{8}+1$
$\dfrac{7\pi}{6}+2$
$\dfrac{9\pi}{8}+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Công thức tính thể tích vật thể tròn xoay thu được khi cho hình phẳng (phần gạch sọc của hình vẽ) giới hạn bởi các đường $y=\sqrt{x+2}$, $Ox$, $x=1$ quay xung quanh trục $Ox$ là

$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}(x+2)\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}\sqrt[4]{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}\sqrt{x+2}\mathrm{d}x$
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}(x+2)\mathrm{d}x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng

$-77$
$-17$
$103$
$43$
2 lời giải Sàng Khôn
Lời giải Tương tự
A

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?

$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tích phân $f\left(x\right)=\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{3}}\cos x\mathrm{d}x$ bằng

$\dfrac{1}{2}$
$\dfrac{\sqrt{3}}{2}$
$-\dfrac{\sqrt{3}}{2}$
$-\dfrac{1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hình phẳng $A$ giới hạn bởi đồ thị hai hàm số $y=\sqrt{x}$ và $y=\dfrac{1}{2}x$ (phần tô đậm trong hình vẽ).

Tính thể tích $V$ khối tròn xoay tạo thành khi quay hình $A$ xung quanh trục $Ox$.

$V=\dfrac{8}{3}\pi$
$V=\dfrac{8}{5}\pi$
$V=0,533$
$V=0,53\pi$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $D$ giới hạn bởi các đường $y=x+2$, $y=0$, $x=1$ và $x=3$. Tính thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$.

$V=\dfrac{98}{3}$
$V=8\pi$
$V=\dfrac{98\pi}{3}$
$V=\dfrac{98\pi^2}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Gọi $D$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x)$ liên tục trên đoạn $[a;b]$, trục hoành và hai đường thẳng $x=a$, $x=b$. Thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$ được tính theo công thức nào dưới đây?

$V=\pi^2\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$
$V=\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$
$V=\left(\pi\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\right)^2$
$V=2\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hình phẳng $\mathscr{D}$ giới hạn bởi đồ thị hàm số $y=2x-x^2$ và trục $Ox$. Thể tích của khối tròn xoay được tạo thành khi quay $\mathscr{D}$ quanh trục $Ox$ bằng

$\dfrac{256\pi}{15}$
$\dfrac{64\pi}{15}$
$\dfrac{16\pi}{15}$
$\dfrac{4\pi}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hình phẳng $\left(\mathscr{D}\right)$ giới hạn bởi đồ thị hàm số $y=\sqrt{x}$, hai đường thẳng $x=1$, $x=2$ và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay $\left(\mathscr{D}\right)$ quanh trục hoành.

$3\pi$
$\dfrac{3}{2}$
$\dfrac{2\pi}{3}$
$\dfrac{3\pi}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự