Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
$(-\infty;6]$ | |
$(-\infty;3]$ | |
$(-\infty;3)$ | |
$[3;6]$ |
Tập hợp các tham số thực \(m\) để hàm số \(y=x^3-3mx^2+3x\) đồng biến trên \((1;+\infty)\) là
\((-\infty;0]\) | |
\((-\infty;1]\) | |
\((-\infty;2)\) | |
\((-\infty;1)\) |
Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là
\(0\) | |
\(8\) | |
\(7\) | |
\(6\) |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi
\(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\) |
Tìm điều kiện của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-mx^2+(2m+15)x+7$$luôn đồng biến trên \(\mathbb{R}\).
\(-3\leq m\leq5\) | |
\(m\leq-3\) hoặc \(m\geq5\) | |
\(-3< m<5\) | |
\(m<-3\) hoặc \(m>5\) |
Tìm tập hợp các giá trị của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}+x^2+(m-1)x+2019$$đồng biến trên \(\mathbb{R}\).
\([1;+\infty)\) | |
\([1;2]\) | |
\((-\infty;2]\) | |
\([2;+\infty)\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-2mx^2+4x-5$$đồng biến trên \(\mathbb{R}\).
\(0< m<1\) | |
\(-1\leq m\leq1\) | |
\(0\leq m\leq1\) | |
\(-1< m<1\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\sqrt{x^2-3x+2}\) | |
\(y=x^4+x^2+1\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=x^3+5x+13\) |
Hàm số \(y=x^3-3x^2+5\) đồng biến trên khoảng
\((0;2)\) | |
\((0;+\infty)\) | |
\((-\infty;2)\) | |
\((-\infty;0)\) và \((2;+\infty)\) |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
$4$ | |
$6$ | |
$5$ | |
$7$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
$(-\infty;0)$ | |
$(2;+\infty)$ | |
$(0;+\infty)$ | |
$(-1;2)$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Hàm số $y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-6x+\dfrac{5}{6}$ đồng biến trên khoảng
$(3;+\infty)$ | |
$(-\infty;3)$ | |
$(-2;3)$ | |
$(-2;+\infty)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-2)^2(1-x)$ với mọi $x\in\mathbb{R}$. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
$(1;2)$ | |
$(1;+\infty)$ | |
$(2;+\infty)$ | |
$(-\infty;1)$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
$(1;3)$ | |
$(-\infty;-3)$ | |
$(3;4)$ | |
$(4;5)$ |
Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=x^4-x^2$ | |
$y=x^3-x$ | |
$y=\dfrac{x-1}{x+2}$ | |
$y=x^3+x$ |