Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=-x^3-x$ | |
$y=-x^4-x^2$ | |
$y=-x^3+x$ | |
$y=\dfrac{x+2}{x-1}$ |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).
\(9\) | |
\(7\) | |
Vô số | |
\(8\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.
\(-\dfrac{5}{4}\leq m\leq1\) | |
\(-\dfrac{2}{7}\leq m<1\) | |
\(-\dfrac{7}{2}\leq m<1\) | |
\(-\dfrac{2}{7}\leq m\leq1\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).
\(m\in(-\infty;-3)\cup(1;+\infty)\) | |
\(m\in[-3;1]\) | |
\(m\in(-\infty;1]\) | |
\(m\in(-3;1)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).
\(-1\leq m\leq3\) | |
\(-3< m<1\) | |
\(-1< m<3\) | |
\(-3\leq m\leq1\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\sqrt{x^2-3x+2}\) | |
\(y=x^4+x^2+1\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=x^3+5x+13\) |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=x^4-x^2$ | |
$y=x^3-x$ | |
$y=\dfrac{x-1}{x+2}$ | |
$y=x^3+x$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=\dfrac{x+1}{x-2}$ | |
$y=x^2+2x$ | |
$y=x^3-x^2+x$ | |
$y=x^4-3x^2+2$ |
Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là
\(0\) | |
\(8\) | |
\(7\) | |
\(6\) |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
\(0\) | |
\(3\) | |
\(1\) | |
\(2\) |
Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi
\(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\) | |
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.
\(m<-3\) | |
\(m\leq-3\) | |
\(m\leq1\) | |
\(m<1\) |
Tìm điều kiện của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-mx^2+(2m+15)x+7$$luôn đồng biến trên \(\mathbb{R}\).
\(-3\leq m\leq5\) | |
\(m\leq-3\) hoặc \(m\geq5\) | |
\(-3< m<5\) | |
\(m<-3\) hoặc \(m>5\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.
\(m\leq1\) | |
\(m<1\) | |
\(m<-3\) | |
\(m\leq-3\) |
Tìm tập hợp các giá trị của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}+x^2+(m-1)x+2019$$đồng biến trên \(\mathbb{R}\).
\([1;+\infty)\) | |
\([1;2]\) | |
\((-\infty;2]\) | |
\([2;+\infty)\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x^3}{3}-2mx^2+4x-5$$đồng biến trên \(\mathbb{R}\).
\(0< m<1\) | |
\(-1\leq m\leq1\) | |
\(0\leq m\leq1\) | |
\(-1< m<1\) |