Hình bên là đồ thị hàm số $y=f'(x)$.
Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(0;1)$ và $(2;+\infty)$ |
![]() | $(1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(0;1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ |
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ |
![]() | $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ |
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.
Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
![]() | $[-2;0]$ và $[2;+\infty)$ |
![]() | $(-\infty;-2]$ và $[0;2]$ |
![]() | $[-2;2]$ |
![]() | $(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
![]() | \((-\infty;-1)\) |
![]() | \((0;1)\) |
![]() | \((1;+\infty)\) |
![]() | \((-\infty;+\infty)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
![]() | \((-\infty;-2)\) và \((0;+\infty)\) |
![]() | \((-3;+\infty)\) |
![]() | \((-\infty;3)\) và \((0;+\infty)\) |
![]() | \((-2;0)\) |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
![]() | $(-1;1)$ |
![]() | $(-2;0)$ |
![]() | $(-2;-1)$ |
![]() | $(0;2)$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
![]() | $(-\infty;0)$ |
![]() | $(-1;1)$ |
![]() | $(1;4)$ |
![]() | $(1;+\infty)$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
![]() | $(2;+\infty)$ |
![]() | $(-2;2)$ |
![]() | $(0;2)$ |
![]() | $(-\infty;2)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
![]() | $(1;+\infty)$ |
![]() | $(-1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
![]() | $(-\infty;0)$ |
![]() | $(2;+\infty)$ |
![]() | $(0;+\infty)$ |
![]() | $(-1;2)$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(1;3)$ |
![]() | $(-\infty;-3)$ |
![]() | $(3;4)$ |
![]() | $(4;5)$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
![]() | $(-1;1)$ |
![]() | $\left(0;\dfrac{5}{2}\right)$ |
![]() | $\left(\dfrac{5}{2};4\right)$ |
![]() | $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.
Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
![]() | $\left(-\dfrac{1}{2};+\infty\right)$ |
![]() | $\left(-\dfrac{3}{2};+\infty\right)$ |
![]() | $\left(-\infty;\dfrac{3}{2}\right)$ |
![]() | $\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$, có bảng xét dấu đạo hàm như sau:
Hàm số $y=3f(2x-1)-4x^3+15x^2-18x+1$ đồng biến trên khoảng nào dưới đây?
![]() | $(3;+\infty)$ |
![]() | $\left(1;\dfrac{3}{2}\right)$ |
![]() | $\left(\dfrac{5}{2};3\right)$ |
![]() | $\left(2;\dfrac{5}{2}\right)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.
Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
![]() | $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ |
![]() | $(0;2)$ |
![]() | $(-\infty;-1)$ |
![]() | $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |
Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.
Mệnh đề nào dưới đây đúng?
![]() | $y'< 0,\,\forall x\ne-1$ |
![]() | $y'>0,\,\forall x\ne-1$ |
![]() | $y'< 0,\,\forall x\in\mathbb{R}$ |
![]() | $y'>0,\,\forall x\in\mathbb{R}$ |
Cho hàm số $y=f\left(x\right)$ có đồ thị như hình bên.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
![]() | $\left(0;2\right)$ |
![]() | $\left(2;+\infty\right)$ |
![]() | $\left(0;+\infty\right)$ |
![]() | $\left(-\infty;2\right)$ |
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu như hình bên. Hàm số \(f(3-2x)\) đồng biến trên khoảng nào dưới đây?
![]() | \((3;4)\) |
![]() | \((2;3)\) |
![]() | \((0;2)\) |
![]() | \((-\infty;-3)\) |
Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình trên. Hàm số \(g(x)=f(1-2x)+x^2-x\) nghịch biến trên khoảng nào dưới đây?
![]() | \(\left(1;\dfrac{3}{2}\right)\) |
![]() | \(\left(0;\dfrac{1}{2}\right)\) |
![]() | \(\left(-2;-1\right)\) |
![]() | \(\left(2;3\right)\) |
Cho hàm số \(f(x)\) có bảng xét dấu của đạo hàm như sau:
Hàm số \(y=3f(x+2)-x^3+3x\) đồng biến trên khoảng nào sau đây:
![]() | \((1;+\infty)\) |
![]() | \((-\infty;-1)\) |
![]() | \((-1;0)\) |
![]() | \((0;2)\) |