Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
![]() | $(-\infty;0)$ |
![]() | $(-1;1)$ |
![]() | $(1;4)$ |
![]() | $(1;+\infty)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
![]() | $(1;+\infty)$ |
![]() | $(-1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(-\infty;-1)$ |
Hình bên là đồ thị hàm số $y=f'(x)$.
Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(0;1)$ và $(2;+\infty)$ |
![]() | $(1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(0;1)$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
![]() | $(-1;1)$ |
![]() | $\left(0;\dfrac{5}{2}\right)$ |
![]() | $\left(\dfrac{5}{2};4\right)$ |
![]() | $(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ |
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ |
![]() | $\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ |
![]() | $\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.
Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
![]() | $\left(-\dfrac{1}{2};+\infty\right)$ |
![]() | $\left(-\dfrac{3}{2};+\infty\right)$ |
![]() | $\left(-\infty;\dfrac{3}{2}\right)$ |
![]() | $\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.
Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
![]() | $[-2;0]$ và $[2;+\infty)$ |
![]() | $(-\infty;-2]$ và $[0;2]$ |
![]() | $[-2;2]$ |
![]() | $(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.
Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
![]() | $\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ |
![]() | $(0;2)$ |
![]() | $(-\infty;-1)$ |
![]() | $\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |
Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.
Mệnh đề nào dưới đây đúng?
![]() | $y'< 0,\,\forall x\ne-1$ |
![]() | $y'>0,\,\forall x\ne-1$ |
![]() | $y'< 0,\,\forall x\in\mathbb{R}$ |
![]() | $y'>0,\,\forall x\in\mathbb{R}$ |
Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình trên. Hàm số \(g(x)=f(1-2x)+x^2-x\) nghịch biến trên khoảng nào dưới đây?
![]() | \(\left(1;\dfrac{3}{2}\right)\) |
![]() | \(\left(0;\dfrac{1}{2}\right)\) |
![]() | \(\left(-2;-1\right)\) |
![]() | \(\left(2;3\right)\) |
Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f'(x)\) như hình vẽ.
Hàm số \(y=f(3-2x)\) nghịch biến trên khoảng nào sau đây:
![]() | \((-1;+\infty)\) |
![]() | \((0;2)\) |
![]() | \((-\infty;-1)\) |
![]() | \((1;3)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.
Khẳng định nào sau đây đúng về hàm số \(y=f(x)\)?
![]() | Hàm số đồng biến trên khoảng \((-\infty;-1)\) |
![]() | Hàm số đồng biến trên khoảng \((-1;0)\) |
![]() | Hàm số đồng biến trên khoảng \((1;2)\) |
![]() | Hàm số nghịch biến trên khoảng \((0;+\infty)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.
Khẳng định nào sau đây sai?
![]() | Hàm số \(y=f(x)\) nghịch biến trên khoảng \((-\infty;-2)\) |
![]() | Hàm số \(y=f(x)\) đồng biến trên khoảng \((1;+\infty)\) |
![]() | Hàm số \(y=f(x)\) luôn tăng trên khoảng \((-1;1)\) |
![]() | Hàm số \(y=f(x)\) giảm trên đoạn có độ dài bằng \(2\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Mệnh đề nào sau đây là đúng?
![]() | Hàm số đồng biến trên khoảng \((-1;0)\) và \((1;+\infty)\) |
![]() | Hàm số đồng biến trên khoảng \((-\infty;-1)\) và \((0;1)\) |
![]() | Hàm số nghịch biến trên khoảng \((-1;1)\) |
![]() | Hàm số nghịch biến trên khoảng \((-1;0)\) và \((1;+\infty)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
![]() | \((-\infty;-1)\) |
![]() | \((0;1)\) |
![]() | \((1;+\infty)\) |
![]() | \((-\infty;+\infty)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
![]() | \((-2;1)\) |
![]() | \((-1;2)\) |
![]() | \((-2;-1)\) |
![]() | \((-1;1)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
![]() | \((-\infty;-2)\) và \((0;+\infty)\) |
![]() | \((-3;+\infty)\) |
![]() | \((-\infty;3)\) và \((0;+\infty)\) |
![]() | \((-2;0)\) |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.
Khẳng định nào sau đây là sai?
![]() | Hàm số đồng biến trên $(1;+\infty)$ |
![]() | Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ |
![]() | Hàm số đồng biến trên $(-\infty;-1)$ |
![]() | Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
![]() | $(-1;1)$ |
![]() | $(-2;0)$ |
![]() | $(-2;-1)$ |
![]() | $(0;2)$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
![]() | $(-\infty;2)$ |
![]() | $(-\infty;-1)$ |
![]() | $(-1;2)$ |
![]() | $(-1;+\infty)$ |