Ngân hàng bài tập

Bài tập tương tự

B

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.

\(m\leq1\)
\(m<1\)
\(m<-3\)
\(m\leq-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập hợp các tham số thực \(m\) để hàm số \(y=\dfrac{x}{x-m}\) nghịch biến trên \((1;+\infty)\) là

\((0;1)\)
\([0;1)\)
\((0;1]\)
\([0;1]\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=\dfrac{mx+2}{2x+m}\) với \(m\) là tham số thực. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \((0;1)\). Tìm số phần tử của \(S\).

\(1\)
\(5\)
\(2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số giá trị nguyên của \(m\) để hàm số $$y=\dfrac{mx-2}{-2x+m}$$nghịch biến trên khoảng \(\left(\dfrac{1}{2};+\infty\right)\) là

\(4\)
\(5\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).

\(9\)
\(7\)
Vô số
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.

\(-\dfrac{5}{4}\leq m\leq1\)
\(-\dfrac{2}{7}\leq m<1\)
\(-\dfrac{7}{2}\leq m<1\)
\(-\dfrac{2}{7}\leq m\leq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).

\(m\in(-\infty;-3)\cup(1;+\infty)\)
\(m\in[-3;1]\)
\(m\in(-\infty;1]\)
\(m\in(-3;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).

\(-1\leq m\leq3\)
\(-3< m<1\)
\(-1< m<3\)
\(-3\leq m\leq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.

$\left(-\infty;-\dfrac{14}{15}\right)$
$\left(-\infty;-\dfrac{14}{15}\right]$
$\left[-2;-\dfrac{14}{15}\right]$
$\left[-\dfrac{14}{15};+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.

$7$
$4$
$5$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?

$y=-x^3-x$
$y=-x^4-x^2$
$y=-x^3+x$
$y=\dfrac{x+2}{x-1}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm $m$ để hàm số $y=-\left(m^2+1\right)x+m-4$ nghịch biến trên $\Bbb{R}$.

$m>1$
Với mọi $m$
$m<-1$
Không tồn tại $m$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là

\(0\)
\(8\)
\(7\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?

\(y=\dfrac{x-1}{x}\)
\(y=2x^3\)
\(y=x^2+1\)
\(y=x^4+5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(f\left(x\right)=\dfrac{mx-4}{x-m}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)?

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm điều kiện của tham số \(m\) để hàm số \(y=(m-3)x+2019\) luôn nghịch biến trên \(\Bbb{R}\).

\(m>3\)
\(m\leq3\)
\(m<3\)
\(m\neq3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).

\(T=-10\)
\(T=-9\)
\(T=-6\)
\(T=-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).

\(0\)
\(3\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số \(y=ax^3+bx^2+cx+d\) đồng biến trên \(\mathbb{R}\) khi

\(\left[\begin{array}{l}a=b,\;c>0\\ b^2-3ac\leq0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=c=0\\ a>0,\;b^2-3ac<0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\leq0\end{array}\right.\)
\(\left[\begin{array}{l}a=b=0,\;c>0\\ a>0,\;b^2-3ac\geq0\end{array}\right.\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).

\(-2\leq m<-1\) hoặc \(m>1\)
\(m\leq-1\) hoặc \(m>1\)
\(-1< m<1\)
\(m<-1\) hoặc \(m\geq1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự