Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là
$(3;7)$ | |
$(-3;0)$ | |
$(3;0)$ | |
$(-3;7)$ |
Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là
$(2;-2)$ | |
$(-2;2)$ | |
$(3;2)$ | |
$\left(\dfrac{3}{2};\dfrac{7}{2}\right)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A\left(1;0\right)$ và $B\left(0;-2\right)$. Tọa độ trung điểm của đoạn thẳng $AB$ là
$\left(\dfrac{1}{2};-1\right)$ | |
$\left(-1;\dfrac{1}{2}\right)$ | |
$\left(\dfrac{1}{2};-2\right)$ | |
$\left(1;-1\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $M\left(-\dfrac{5}{2};-1\right)$, $N\left(-\dfrac{3}{2};-\dfrac{7}{2}\right)$, $P\left(0;\dfrac{1}{2}\right)$ lần lượt là trung điểm các cạnh $BC$, $CA$ và $AB$. Tìm tọa độ trọng tâm $G$ của tam giác $ABC$.
$G\left(-\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(-4;-4)$ | |
$G\left(\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(4;-4)$ |
Trong mặt phẳng $Oxy$, cho $A(4;1)$, $B(3;2)$. Tìm tọa độ $M$ sao cho $B$ là trung điểm đoạn thẳng $AM$.
$\left(2;1\right)$ | |
$\left(3;2\right)$ | |
$\left(2;3\right)$ | |
$\left(5;0\right)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A(3;-5)$, $B(1;7)$. Trung điểm $I$ của đoạn thẳng $AB$ có tọa độ là
$I(2;-1)$ | |
$I(-2;12)$ | |
$I(4;2)$ | |
$I(2;1)$ |
Cho tam giác $ABC$. Biết trung điểm của các cạnh $BC$, $CA$, $AB$ có tọa độ lần lượt là $M(1;-1)$, $N(3;2)$, $P(0;-5)$. Khi đó tọa độ của điểm $A$ là
$(-2;2)$ | |
$(5;1)$ | |
$\left(\sqrt{5};0\right)$ | |
$\left(2;\sqrt{2}\right)$ |
Trong không gian \(Oxyz\), cho hai điểm \(A(2;-4;3)\) và \(B(2;2;9)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là
\((0;3;3)\) | |
\((4;-2;12)\) | |
\((2;-1;6)\) | |
\(\left(0;\dfrac{3}{2};\dfrac{3}{2}\right)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(-1;1;0)\) và \(B(1;3;2)\). Gọi \(I\) là trung điểm của đoạn thẳng \(AB\). Tọa độ của \(I\) là
\((0;4;2)\) | |
\((2;2;2)\) | |
\((-2;-2;-2)\) | |
\((0;2;1)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-3;2)\) và \(B(3;-1;4)\). Tìm tọa độ trung điểm \(I\) của đoạn thẳng \(AB\).
\(I(2;2;2)\) | |
\(I(2;-2;3)\) | |
\(I(1;1;1)\) | |
\(I(4;-4;6)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-1;2)\) và \(B(3;1;0)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
\(I(2;0;1)\) | |
\(I(1;1;-1)\) | |
\(I(2;2;-2)\) | |
\(I(4;0;2)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;2;3)\) và \(B(3;0;-5)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
\(I(2;1;-1)\) | |
\(I(2;2;-2)\) | |
\(I(4;2;-2)\) | |
\(I(-1;1;4)\) |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
$P(3;-12)$ | |
$Q(3;12)$ | |
$M(14;-5)$ | |
$N(-3;12)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là
$(2;7)$ | |
$(-2;7)$ | |
$(2;-7)$ | |
$(-7;2)$ |
Trong mặt phẳng $Oxy$, phép quay tâm $O$ góc quay $-90^\circ$ biến $M(-3;5)$ thành điểm có tọa độ
$(-5;-3)$ | |
$(5;-3)$ | |
$(5;3)$ | |
$(-5;3)$ |
Trong mặt phẳng $Oxy$, cho điểm $A(1;0)$. Ảnh của $A$ qua phép quay tâm $O$ góc quay $90^\circ$ là
$A’(0;-1)$ | |
$A’(-1;0)$ | |
$A’(0;1)$ | |
$A’(1;1)$ |
Trong mặt phẳng $Oxy$, cho điểm $M(1;-3)$. Ảnh của điểm M qua phép tịnh tiến theo vectơ $\overrightarrow{v}=(1;-2)$ là
$M’(2;5)$ | |
$M’(2;-5)$ | |
$M’(0;-1)$ | |
$M’(0;-5)$ |
Trong mặt phẳng $Oxy$, cho tam giác $PQR$ có $P(-3;2)$, $Q(1;1)$, $R(2;-4)$. Gọi $P',\,Q',\,R'$ lần lượt là ảnh của $P,\,Q,\,R$ qua phép vị tự tâm $O$ tỉ số $k=-\dfrac{1}{3}$. Khi đó tọa độ trọng tâm của tam giác $P'Q'R'$ là
$\left(\dfrac{1}{9};\dfrac{1}{3}\right)$ | |
$\left(0;\dfrac{1}{9}\right)$ | |
$\left(\dfrac{2}{3};-\dfrac{1}{3}\right)$ | |
$\left(\dfrac{2}{9};0\right)$ |
Trong mặt phẳng $Oxy$, tìm ảnh $A'$ của điểm $A(1;2)$ qua phép vị tự tâm $I(3;-1)$ tỉ số $k=2$.
$A'(3;4)$ | |
$A'(1;5)$ | |
$A'(-5;-1)$ | |
$A'(-1;5)$ |