Trong mặt phẳng $Oxy$, cho các điểm $A(1;3)$, $B(4;0)$, $C(2;-5)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}$ là
$M\left(1;18\right)$ | |
$M\left(-1;18\right)$ | |
$M\left(1;-18\right)$ | |
$M\left(-18;1\right)$ |
Trong mặt phẳng $Oxy$, cho hình thang $ABCD$ có đáy lớn $CD$ gấp đôi đáy nhỏ $AB$. Biết $A(1;1)$, $B(-1;2)$, $C(0;1)$. Tọa độ điểm $D$ là
$D(4;-1)$ | |
$D(-4;-1)$ | |
$D(4;1)$ | |
$D(-4;1)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A(-3;2)$, $B(1;4)$. Tìm tọa độ điểm $M$ thỏa mãn $\overrightarrow{AM}=-2\overrightarrow{AB}$.
$M(6;-2)$ | |
$M(3;8)$ | |
$M(8;-4)$ | |
$M(-11;-2)$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
$(10;-15)$ | |
$(15;10)$ | |
$(10;15)$ | |
$(-10;15)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.
$\overrightarrow{x}=(7;-7)$ | |
$\overrightarrow{x}=(9;5)$ | |
$\overrightarrow{x}=(9;-11)$ | |
$\overrightarrow{x}=(-1;5)$ |
Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.
$\overrightarrow{c}=\left(-3;-4\right)$ | |
$\overrightarrow{c}=\left(3;-4\right)$ | |
$\overrightarrow{c}=\left(-2;-3\right)$ | |
$\overrightarrow{c}=\left(-3;-2\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
$\overrightarrow{x}=(19;22)$ | |
$\overrightarrow{x}=(-19;-22)$ | |
$\overrightarrow{x}=(-19;22)$ | |
$\overrightarrow{x}=(19;-22)$ |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=2\overrightarrow{AC}\) | |
\(A,\,B,\,C\) thẳng hàng | |
\(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\) |
Trong mặt phẳng tọa độ \(Oxy\), cho hai vectơ \(\vec{u}=(-1;2)\) và \(\vec{v}=(3;-2)\). Tính tọa độ của vectơ \(2\vec{u}-3\vec{v}\).
\((11;-10)\) | |
\((9;-10)\) | |
\((-11;-2)\) | |
\((-11;10)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(2;-4)\) và \(\vec{b}=(-5;3)\). Tìm tọa độ vectơ $\vec{u}=2\vec{a}-\vec{b}$.
\(\vec{u}=(7;-7)\) | |
\(\vec{u}=(9;-11)\) | |
\(\vec{u}=(9;-5)\) | |
\(\vec{u}=(-1;5)\) |
Trong không gian \(Oxyz\), cho \(A(1;-1;0)\), \(B(0;2;0)\) và \(C(2;1;3)\). Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) là
\(M(3;2;-3)\) | |
\(M(3;-2;3)\) | |
\(M(3;-2;-3)\) | |
\(M(3;2;3)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(0;1;-2)\) và \(B(3;-1;1)\). Tìm tọa độ điểm \(M\) sao cho \(\overrightarrow{AM}=3\overrightarrow{AB}\).
\(M(9;-5;7)\) | |
\(M(9;5;7)\) | |
\(M(-9;5;-7)\) | |
\(M(9;-5;-5)\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn $$2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}.$$Khẳng định nào sau đây là đúng?
\(M\equiv A\) | |
\(M\equiv B\) | |
\(M\equiv C\) | |
\(M\) là trọng tâm \(\triangle ABC\) |
Cho tam giác \(ABC\), trung tuyến \(AM\). Đẳng thức nào sau đây không đúng?
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) | |
\(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{CB}\) |
Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?
\(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?
\(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Mệnh đề nào sau đây sai?
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) | |
\(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) |
Gọi \(M\) là trung điểm của đoạn thẳng \(AB\). Khẳng định nào sau đây là sai?
\(\overrightarrow{AB}=2\overrightarrow{MB}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}=\vec{0}\) | |
\(\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{AB}\) | |
\(\overrightarrow{MA}=\overrightarrow{MB}\) |
Cho hình bình hành \(ABCD\), tâm \(M\). Mệnh đề nào sau đây sai?
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) | |
\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) | |
\(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MC}+\overrightarrow{MD}\) |