Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(m;2)\), \(\vec{b}=(-5;1)\) và \(\vec{c}=(m;7)\). Tìm giá trị của \(m\), biết rằng \(\vec{c}=2\vec{a}+3\vec{b}\).
![]() | \(m=-15\) |
![]() | \(m=3\) |
![]() | \(m=15\) |
![]() | \(m=5\) |
Trong mặt phẳng $Oxy$, cho ba vectơ $\overrightarrow{x}=(2;3)$, $\overrightarrow{y}=(-2;0)$, $\overrightarrow{u}=(6;6)$. Tìm $m+n$ biết $\overrightarrow{u}=m\overrightarrow{x}+n\overrightarrow{y}$.
![]() | $3$ |
![]() | $1$ |
![]() | $2$ |
![]() | $4$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(2;-1)$, $\overrightarrow{b}=(-3;4)$ và $\overrightarrow{c}=(-4;7)$. Cho hai số thực $m$, $n$ thỏa mãn $m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{c}$. Tính $S=m^2+n^2$.
![]() | $S=5$ |
![]() | $S=3$ |
![]() | $S=4$ |
![]() | $S=1$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(2;-4)$, $\overrightarrow{a}=(-1;-2)$, $\overrightarrow{b}=(1;-3)$. Biết $\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}$. Tính $m-n$ được kết quả là
![]() | $5$ |
![]() | $-2$ |
![]() | $-5$ |
![]() | $2$ |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
![]() | \(m=-5\) |
![]() | \(m=4\) |
![]() | \(m=0\) |
![]() | \(m=-1\) |
Trong mặt phẳng tọa độ \(Oxy\), cho ba vectơ \(\vec{a}=(4;-1)\), \(\vec{b}=(1;-1)\) và \(\vec{c}=(2;1)\). Chọn mệnh đề đúng.
![]() | \(\vec{a}=\vec{b}-2\vec{c}\) |
![]() | \(\vec{a}=2\vec{b}-\vec{c}\) |
![]() | \(\vec{a}=2\vec{b}+\vec{c}\) |
![]() | \(\vec{a}=\vec{b}+\vec{c}\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\) |
Trong mặt phẳng $Oxy$, cho các điểm $A(1;3)$, $B(4;0)$, $C(2;-5)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}$ là
![]() | $M\left(1;18\right)$ |
![]() | $M\left(-1;18\right)$ |
![]() | $M\left(1;-18\right)$ |
![]() | $M\left(-18;1\right)$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
![]() | $(10;-15)$ |
![]() | $(15;10)$ |
![]() | $(10;15)$ |
![]() | $(-10;15)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.
![]() | $\overrightarrow{x}=(7;-7)$ |
![]() | $\overrightarrow{x}=(9;5)$ |
![]() | $\overrightarrow{x}=(9;-11)$ |
![]() | $\overrightarrow{x}=(-1;5)$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
![]() | $m=\sqrt{6}$ |
![]() | $m=-6$ |
![]() | Không có giá trị nào của $m$ |
![]() | $m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
![]() | $m=-\dfrac{2}{3}$ |
![]() | $m=\dfrac{2}{3}$ |
![]() | $m=-\dfrac{3}{2}$ |
![]() | $m=\dfrac{3}{2}$ |
Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.
![]() | $\overrightarrow{c}=\left(-3;-4\right)$ |
![]() | $\overrightarrow{c}=\left(3;-4\right)$ |
![]() | $\overrightarrow{c}=\left(-2;-3\right)$ |
![]() | $\overrightarrow{c}=\left(-3;-2\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
![]() | $\overrightarrow{x}=(19;22)$ |
![]() | $\overrightarrow{x}=(-19;-22)$ |
![]() | $\overrightarrow{x}=(-19;22)$ |
![]() | $\overrightarrow{x}=(19;-22)$ |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua ba điểm \(O\left(0;0\right)\), \(A\left(a;0\right)\), \(B\left(0;b\right)\) có phương trình là
![]() | \(x^2+y^2-2ax-by=0\) |
![]() | \(x^2+y^2-ax-by+xy=0\) |
![]() | \(x^2+y^2-ax-by=0\) |
![]() | \(x^2-y^2-ay+by=0\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{AB}=2\overrightarrow{AC}\) |
![]() | \(A,\,B,\,C\) thẳng hàng |
![]() | \(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\) |
![]() | \(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.
![]() | \(m=-1\) |
![]() | \(m=-\dfrac{1}{2}\) |
![]() | \(m=\dfrac{1}{4}\) |
![]() | \(m=2\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?
![]() | \(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng |
![]() | \(\vec{u},\,\vec{v}\) cùng phương |
![]() | \(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng |
![]() | \(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương |
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(P(4;5)\) và \(S(3;-1)\). Tìm tọa độ điểm \(H\) thỏa mãn $$\overrightarrow{OH}=2\overrightarrow{OP}-3\overrightarrow{OS}.$$
![]() | \(H(-1;13)\) |
![]() | \(H(-1;7)\) |
![]() | \(H(-6;-17)\) |
![]() | \(H(1;-13)\) |
Trong mặt phẳng tọa độ \(Oxy\), cho hai vectơ \(\vec{u}=(-1;2)\) và \(\vec{v}=(3;-2)\). Tính tọa độ của vectơ \(2\vec{u}-3\vec{v}\).
![]() | \((11;-10)\) |
![]() | \((9;-10)\) |
![]() | \((-11;-2)\) |
![]() | \((-11;10)\) |