Ngân hàng bài tập

Bài tập tương tự

B

Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.

$m=\sqrt{6}$
$m=-6$
Không có giá trị nào của $m$
$m=\pm\sqrt{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.

$m=-\dfrac{2}{3}$
$m=\dfrac{2}{3}$
$m=-\dfrac{3}{2}$
$m=\dfrac{3}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.

\(m=-5\)
\(m=4\)
\(m=0\)
\(m=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, cho ba vectơ $\overrightarrow{x}=(2;3)$, $\overrightarrow{y}=(-2;0)$, $\overrightarrow{u}=(6;6)$. Tìm $m+n$ biết $\overrightarrow{u}=m\overrightarrow{x}+n\overrightarrow{y}$.

$3$
$1$
$2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(2;-1)$, $\overrightarrow{b}=(-3;4)$ và $\overrightarrow{c}=(-4;7)$. Cho hai số thực $m$, $n$ thỏa mãn $m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{c}$. Tính $S=m^2+n^2$.

$S=5$
$S=3$
$S=4$
$S=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(2;-4)$, $\overrightarrow{a}=(-1;-2)$, $\overrightarrow{b}=(1;-3)$. Biết $\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}$. Tính $m-n$ được kết quả là

$5$
$-2$
$-5$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cặp vectơ nào sau đây cùng phương?

\(\vec{u}=(1;-2)\) và \(\vec{v}=(2;4)\)
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;4)\)
\(\vec{u}=(1;0)\) và \(\vec{v}=(0;1)\)
\(\vec{u}=(1;-2)\) và \(\vec{v}=(-2;-4)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?

Tứ giác \(ABCD\) là hình bình hành
\(G(9;7)\) là trọng tâm tam giác \(BCD\)
\(\overrightarrow{AB}=\overrightarrow{CD}\)
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;5)\), \(B(5;5)\), \(C(-1;11)\). Khẳng định nào sau đây đúng?

\(A,\,B,\,C\) thẳng hàng
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương
\(\overrightarrow{AB},\,\overrightarrow{AC}\) không cùng phương
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(3;-2)\), \(B(7;1)\), \(C(0;1)\), \(D(-8;-5)\). Khẳng định nào sau đây đúng?

\(\overrightarrow{AB},\,\overrightarrow{CD}\) đối nhau
\(\overrightarrow{AB},\,\overrightarrow{CD}\) ngược hướng
\(\overrightarrow{AB},\,\overrightarrow{CD}\) cùng hướng
\(A,\,B,\,C,\,D\) thẳng hàng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?

\(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng
\(\vec{u},\,\vec{v}\) cùng phương
\(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng
\(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Khẳng định nào sau đây là đúng?

\(\vec{a}=(-5;0),\,\vec{b}=(-4;0)\) cùng hướng
\(\vec{c}=(7;3)\) là vectơ đối của \(\vec{d}=(-7;3)\)
\(\vec{u}=(4;2),\,\vec{v}=(8;3)\) cùng phương
\(\vec{m}=(6;3),\,\vec{n}=(2;1)\) ngược hướng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(2;1)\), \(\vec{b}=(3;4)\) và \(\vec{c}=(7;2)\). Tìm giá trị của \(k,\,h\) sao cho $$\vec{c}=k\vec{a}+h\vec{b}$$

\(\begin{cases}k=\dfrac{5}{2}\\ h=-\dfrac{13}{10}\end{cases}\)
\(\begin{cases}k=\dfrac{23}{5}\\ h=-\dfrac{51}{10}\end{cases}\)
\(\begin{cases}k=\dfrac{22}{5}\\ h=-\dfrac{3}{5}\end{cases}\)
\(\begin{cases}k=\dfrac{17}{5}\\ h=-\dfrac{1}{5}\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(m;2)\), \(\vec{b}=(-5;1)\) và \(\vec{c}=(m;7)\). Tìm giá trị của \(m\), biết rằng \(\vec{c}=2\vec{a}+3\vec{b}\).

\(m=-15\)
\(m=3\)
\(m=15\)
\(m=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng \(Oxy\), tọa độ của vectơ \(\vec{i}+\vec{j}\) là

\((0;1)\)
\((1;-1)\)
\((-1;1)\)
\((1;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho vectơ \(\vec{a}=(1;-2)\). Với giá trị nào của \(y\) thì vectơ \(\vec{b}=(-3;y)\) vuông góc với \(\vec{a}\)?

\(-6\)
\(6\)
\(-\dfrac{3}{2}\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).

\(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\)
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\)
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\)
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?

\(\left|\vec{a}\right|=\left|\vec{b}\right|\)
\(\vec{a},\,\vec{b}\) cùng phương
\(\vec{a}\bot\vec{b}\)
\(\vec{a}\cdot\vec{b}=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.

$m=7$; $n=\dfrac{3}{4}$
$m=1$; $n=0$
$m=4$; $n=-3$
$m=7$; $n=-\dfrac{3}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là

$m=-1$ và $n=\dfrac{4}{3}$
$m=-1$ và $n=\dfrac{3}{4}$
$m=1$ và $n=\dfrac{4}{3}$
$m=-3$ và $n=4$
1 lời giải Sàng Khôn
Lời giải Tương tự