Cho \(x,\,y\) là các số thực. Số phức \(z=i\left(1+xi+y+2i\right)\) bằng \(0\) khi
\(x=-1;\,y=-2\) | |
\(x=0;\,y=0\) | |
\(x=-2;\,y=-1\) | |
\(x=2;\,y=1\) |
Tìm hai số thực \(x,\,y\) thỏa mãn $$(2x-3y\mathrm{i})+(1-3\mathrm{i})=-1+6\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.
\(\begin{cases}x=1\\ y=-3\end{cases}\) | |
\(\begin{cases}x=-1\\ y=-3\end{cases}\) | |
\(\begin{cases}x=-1\\ y=-1\end{cases}\) | |
\(\begin{cases}x=1\\ y=-1\end{cases}\) |
Tìm các số thực \(a,\,b\) thỏa mãn $$2a+(b+\mathrm{i})\mathrm{i}=1+2\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.
\(a=0,\;b=2\) | |
\(a=\dfrac{1}{2},\;b=1\) | |
\(a=0,\;b=1\) | |
\(a=1,\;b=2\) |
Trên tập số phức, xét phương trình $z^2+az+b=0$ $(a,b\in\mathbb{R})$. Có bao nhiêu cặp số $(a,b)$ để phương trình đó có hai nghiệm phân biệt $z_1,\,z_2$ thỏa mãn $\big|z_1-2\big|=2$ và $\big|z_2+1-4i\big|=4$?
$2$ | |
$3$ | |
$6$ | |
$4$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
$7$ | |
$-7$ | |
$-1$ | |
$1$ |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
$1$ | |
$-1$ | |
$-i$ | |
$i$ |
Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
$-\dfrac{11}{5}$ | |
$-\dfrac{11}{5}i$ | |
$\dfrac{11}{5}i$ | |
$\dfrac{11}{5}$ |
Số phức $z$ có điểm biểu diễn $M$ trong hình vẽ bên.
Phần ảo của số phức $z+i$ bằng
$4$ | |
$3i$ | |
$2$ | |
$6$ |
Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.
$4$ | |
$3$ | |
$16$ | |
$6$ |
Giá trị các số thực $a,\,b$ thỏa mãn $2a+(b+1+i)i=1+2i$ (với $i$ là đơn vị ảo) là
$a=\dfrac{1}{2}$, $b=0$ | |
$a=\dfrac{1}{2}$, $b=1$ | |
$a=0$, $b=1$ | |
$a=1$, $b=1$ |
Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng
$5$ | |
$2$ | |
$-5$ | |
$-2$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
$1$ | |
$-3$ | |
$9$ | |
$-9$ |
Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.
Phần ảo của số phức $\dfrac{z}{w}$ là
$\dfrac{14}{17}$ | |
$3$ | |
$-\dfrac{5}{17}$ | |
$-\dfrac{1}{2}$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.
$b=2^{1009}$ | |
$b=2^{2017}$ | |
$b=-2^{2018}$ | |
$b=2^{2018}$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z+3+i-|z|i=0$. Tính $S=a+b$.
$-1$ | |
$-3$ | |
$0$ | |
$1$ |
Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2+6z+13=0\). Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(1-z_0\) là
\(N\left(-2;2\right)\) | |
\(M\left(4;2\right)\) | |
\(P\left(4;-2\right)\) | |
\(Q\left(2;-2\right)\) |
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng
\(2\) | |
\(\sqrt{2}\) | |
\(\sqrt{10}\) | |
\(10\) |
Cho hai số phức \(z_1=3-i\), \(z_2=-1+i\). Phần ảo của số phức \(z_1z_2\) bằng
\(4\) | |
\(4i\) | |
\(-1\) | |
\(-i\) |
Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$
Phần thực là \(2\), phần ảo là \(4i\) | |
Phần thực là \(2\), phần ảo là \(-4i\) | |
Phần thực là \(2\), phần ảo là \(4\) | |
Phần thực là \(2\), phần ảo là \(-4\) |