Ngân hàng bài tập

Bài tập tương tự

S

Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là

$I(-3;-4)$
$I(3;4)$
$I(6;8)$
$I(1;-2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).

Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.

Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?

$M$
$Q$
$P$
$N$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức $z$ thỏa mãn $|z|=\sqrt{7}$.

Đường tròn tâm $O(0;0)$, bán kính $R=\dfrac{7}{2}$
Đường tròn tâm $O(0;0)$, bán kính $R=7$
Đường tròn tâm $O(0;0)$, bán kính $R=49$
Đường tròn tâm $O(0;0)$, bán kính $R=\sqrt{7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong mặt phẳng $Oxy$, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-(2-3i)\right|\leq2$.

Một đường thẳng
Một đường tròn
Một hình tròn
Một đường elip
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?

  1. Môđun của $z$ là một số thực dương.
  2. $z^2=|z|^2$.
  3. $\left|\overline{z}\right|=\left|iz\right|=|z|$.
  4. Điểm $M(-a;b)$ biểu diễn số phức $\overline{z}$.
$4$
$1$
$3$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+i|=1\). Biết rằng tập hợp điểm biểu diễn số phức \(w=z-2i\) là một đường tròn. Tâm của đường tròn đó là

\(I(0;-1)\)
\(I(0;-3)\)
\(I(0;3)\)
\(I(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số phức \(z=3-5\mathrm{i}\) và \(w=-1+2\mathrm{i}\). Điểm biểu diễn số phức \(\varphi=\overline{z}-w\cdot z\) trong mặt phẳng \(Oxy\) có tọa độ là

\((-4;-6)\)
\((4;6)\)
\((4;-6)\)
\((-6;-4)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.

$I(-3;-5)$, $R=\sqrt{5}$
$I(3;-5)$, $R=\sqrt{10}$
$I(-3;5)$, $R=\sqrt{10}$
$I(3;5)$, $R=10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là

$\left(-1;-\dfrac{2}{3}\right)$
$\left(-1;\dfrac{2}{3}\right)$
$\left(1;-\dfrac{2}{3}\right)$
$\left(1;\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?

Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$
$z^2=|z|^2$
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$
Mô-đun của $z$ là một số thực dương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là

$P(3;-12)$
$Q(3;12)$
$M(14;-5)$
$N(-3;12)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là

$\left(5;1\right)$
$\left(-1;-5\right)$
$\left(1;5\right)$
$\left(-5;-1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của số phức $z=\dfrac{i-3}{1+i}$?

Điểm $B$
Điểm $C$
Điểm $A$
Điểm $D$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong mặt phẳng $Oxy$ cho hai điểm $A,\,B$ là điểm biểu diễn cho các số phức $z$ và $w=(1+i)z$. Biết tam giác $OAB$ có diện tích bằng $8$. Mô-đun của số phức $w-z$ bằng

$2$
$2\sqrt{2}$
$4\sqrt{2}$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số phức $z$ thỏa mãn $z^2+2\overline{z}=0$?

$0$
$1$
$2$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.

Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$)
Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$)
Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$)
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.

$Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$
$N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$
$P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$
$M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.

$M(-2;11)$
$M(11;2)$
$M(11;-2)$
$M(-2;-11)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, biết rằng tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-2+4i\right|=5$ là một đường tròn. Tọa độ tâm của đường tròn đó là

$(-1;2)$
$(-2;4)$
$(1;-2)$
$(2;-4)$
1 lời giải Sàng Khôn
Lời giải Tương tự