Cho hàm số $$f(x)=\begin{cases}
\dfrac{x^2}{2} &\text{khi }x\leq1\\
ax+b &\text{khi }x>1
\end{cases}$$Tìm tất cả các giá trị của \(a,\,b\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=1\).
![]() | \(a=1,\;b=-\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=-\dfrac{1}{2}\) |
![]() | \(a=1,\;b=\dfrac{1}{2}\) |
Cho hàm số $$f(x)=\begin{cases}
x^2-1 &\text{khi }x\geq0\\
-x^2 &\text{khi }x<0
\end{cases}$$Khẳng định nào sau đây sai?
![]() | Hàm số không liên tục tại \(x=0\) |
![]() | Hàm số có đạo hàm tại \(x=2\) |
![]() | Hàm số liên tục tại \(x=2\) |
![]() | Hàm số có đạo hàm tại \(x=0\) |
Cho hàm số $y=\begin{cases}x^2+ax+b&\text{khi }x\ge2\\ x^3-x^2-8x+10&\text{khi }x<2\end{cases}$. Biết hàm số có đạo hàm tại điểm $x=2$. Giá trị của $a^2+b^2$ bằng
![]() | $20$ |
![]() | $17$ |
![]() | $18$ |
![]() | $25$ |
Cho hàm số $f\left(x\right)=\begin{cases}ax^2+bx+1&\text{khi }x\ge0\\ ax-b-1&\text{khi }x<0\end{cases}$. Khi hàm số $f\left(x\right)$ có đạo hàm tại $x_0=0$, hãy tính $T=a+2b$.
![]() | $T=-4$ |
![]() | $T=0$ |
![]() | $T=-6$ |
![]() | $T=4$ |
Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\setminus\{2\}\) bởi $$f(x)=\begin{cases}
\dfrac{x^3-4x^2+3x}{x^2-3x+2} &\text{khi }x\neq1\\
0 &\text{khi }x=1
\end{cases}$$Tính \(f'(1)\).
![]() | \(f'(1)=\dfrac{3}{2}\) |
![]() | \(f'(1)=1\) |
![]() | \(f'(1)=0\) |
![]() | Không tồn tại |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{\sqrt{x^2+1}-1}{x} &\text{khi }x\neq0\\
0 &\text{khi }x=0
\end{cases}$$Tính \(f'(0)\).
![]() | \(f'(0)=0\) |
![]() | \(f'(0)=1\) |
![]() | \(f'(0)=\dfrac{1}{2}\) |
![]() | Không tồn tại |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{3-\sqrt{4-x}}{4} &\text{khi }x\neq0\\
\dfrac{1}{4} &\text{khi }x=0
\end{cases}$$Tính \(f'(0)\).
![]() | \(f'(0)=\dfrac{1}{4}\) |
![]() | \(f'(0)=\dfrac{1}{16}\) |
![]() | \(f'(0)=\dfrac{1}{32}\) |
![]() | Không tồn tại |
Cho hàm số $f(x)=\begin{cases}4x-7\text{ khi }x\ne3\\ 2m+1\text{ khi }x=3\end{cases}$. Xác định $m$ để hàm số $f(x)$ liên tục tại $x=3$.
![]() | $m=3$ |
![]() | $m=-3$ |
![]() | $m=2$ |
![]() | $m=-2$ |
Cho hàm số $f(x)=\begin{cases}\dfrac{4x^2+3x-1}{x+1} &\text { khi }x\neq-1\\ 2m+1 &\text { khi }x=-1\end{cases}$. Với giá trị nào của $m$ thì hàm số đã cho liên tục tại điểm $x=-1$?
![]() | $m=2$ |
![]() | $m=-3$ |
![]() | $m=\dfrac{1}{2}$ |
![]() | $m=0$ |
Cho hàm số $f\left(x\right)=\begin{cases}\left(x-1\right)^2&\text{khi }x\ge0 \\ -x^2&\text{khi }x<0\end{cases}$ có đạo hàm tại điểm $x_0=0$ bằng
![]() | $f'\left(0\right)=0$ |
![]() | $f'\left(0\right)=1$ |
![]() | $f'\left(0\right)=-2$ |
![]() | Không tồn tại |
Cho hàm số \(y=f(x)\) có đạo hàm thỏa mãn \(f'(6)=2\). Tính giới hạn \(\lim\limits_{x\to6}\dfrac{f(x)-f(6)}{x-6}\).
![]() | \(2\) |
![]() | \(\dfrac{1}{3}\) |
![]() | \(\dfrac{1}{2}\) |
![]() | \(12\) |
Tìm giá trị của \(a\) để giới hạn \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với $$f(x)=\begin{cases}
13x+a &\text{khi }x\leq-\dfrac{1}{2}\\
\dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}
\end{cases}$$tồn tại?
![]() | \(a=9\) |
![]() | \(a=18\) |
![]() | \(a=-4\) |
![]() | \(a=4\) |
Giới hạn nào sau đây tồn tại tại \(x_0=-\dfrac{1}{2}\)?
![]() | \(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{|2x+1|}{2x+1}\) |
![]() | \(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{2x+1}{|2x+1|}\) |
![]() | \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2-3x-2}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\) |
![]() | \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\) |
Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x< 3\\ |3x-11| &\text{khi }x\geq3
\end{cases}$$tại \(x_0=3\) bằng
![]() | \(-2\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x>3 \\
|3x-11| &\text{khi }x\leq3
\end{cases}$$tại \(x_0=3\) bằng
![]() | \(-2\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
2x+5 &\text{khi }x\geq4\\
\dfrac{x^2-16}{x-4} &\text{khi }x<4
\end{cases}$$tại \(x_0=4\) bằng
![]() | \(13\) |
![]() | \(8\) |
![]() | \(4\) |
![]() | Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
x^2-4 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
![]() | \(1\) |
![]() | \(-3\) |
![]() | \(3\) |
![]() | Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
5x^2-2 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
![]() | \(1\) |
![]() | \(-3\) |
![]() | \(3\) |
![]() | Không tồn tại |
Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi
![]() | \(m=4\) |
![]() | \(m=-1\) |
![]() | \(m=3\) |
![]() | \(m=-2\) |
Biết rằng \(\lim\limits_{x\to-\sqrt{3}}\dfrac{2x^3+6\sqrt{3}}{3-x^2}=\dfrac{a\sqrt{3}}{b}\) (\(a,\,b\in\mathbb{Z}\)). Tính \(a^2+b^2\).
![]() | \(10\) |
![]() | \(25\) |
![]() | \(5\) |
![]() | \(13\) |