Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho số phức $z=-5+2i$. Phần thực và phần ảo của số phức $\overline{z}$ lần lượt là
![]() | $5$ và $-2$ |
![]() | $5$ và $2$ |
![]() | $-5$ và $2$ |
![]() | $-5$ và $-2$ |
Cho số phức \(z\) thỏa mãn \(\overline{z}=3+2\mathrm{i}\). Tìm phần thực và phần ảo của \(z\).
![]() | \(3\) và \(2\) |
![]() | \(-3\) và \(2\) |
![]() | \(3\) và \(-2\) |
![]() | \(-3\) và \(-2\) |
Cho số phức \(z=a+b\mathrm{i}\) với \(a,\,b\in\mathbb{R}\). Mệnh đề nào sau đây sai?
![]() | Số phức \(z\) có phần thực là \(a\), phần ảo là \(b\mathrm{i}\) |
![]() | Số phức \(z\) có môđun là \(\sqrt{a^2+b^2}\) |
![]() | Số phức liên hợp của \(z\) là \(\overline{z}=a-b\mathrm{i}\) |
![]() | \(z=0\Leftrightarrow a=b=0\) |
Cho số phức $z=1-2i$. Phần ảo của số phức $\overline{z}$ bằng
![]() | $-1$ |
![]() | $2$ |
![]() | $1$ |
![]() | $-2$ |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
![]() | $1$ |
![]() | $-1$ |
![]() | $-i$ |
![]() | $i$ |
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
![]() | $-\dfrac{11}{5}$ |
![]() | $-\dfrac{11}{5}i$ |
![]() | $\dfrac{11}{5}i$ |
![]() | $\dfrac{11}{5}$ |
Điểm $A$ trong hình vẽ bên biểu diễn cho số phức $z$. Mệnh đề nào sau đây đúng?
![]() | Phần thực là $-3$, phần ảo là $2$ |
![]() | Phần thực là $-3$, phần ảo là $2i$ |
![]() | Phần thực là $3$, phần ảo là $-2i$ |
![]() | Phần thực là $3$, phần ảo là $2$ |
Cho số phức $z=-1+5i$. Phần ảo của số phức $\overline{z}$ bằng
![]() | $-5$ |
![]() | $5$ |
![]() | $1$ |
![]() | $-1$ |
Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng
![]() | $5$ |
![]() | $2$ |
![]() | $-5$ |
![]() | $-2$ |
Số phức có phần thực bằng $3$ và phần ảo bằng $2$ là
![]() | $3+2i$ |
![]() | $2+3i$ |
![]() | $2-3i$ |
![]() | $3-2i$ |
Tìm phần thực $a$ và phần ảo $b$ của số phức $z=\sqrt{5}-2i$.
![]() | $a=-2,\,b=\sqrt{5}$ |
![]() | $a=\sqrt{5},\,b=2$ |
![]() | $a=\sqrt{5},\,b=-2$ |
![]() | $a=\sqrt{5},\,b=-2i$ |
Gọi $a,\,b$ lần lượt là phần thực và phần ảo của số phức $z=-3+2i$. Giá trị của $a-b$ bằng
![]() | $1$ |
![]() | $5$ |
![]() | $-5$ |
![]() | $-1$ |
Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$
![]() | Phần thực là \(2\), phần ảo là \(4i\) |
![]() | Phần thực là \(2\), phần ảo là \(-4i\) |
![]() | Phần thực là \(2\), phần ảo là \(4\) |
![]() | Phần thực là \(2\), phần ảo là \(-4\) |
Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).
![]() | Phần thực là \(4\) và phần ảo là \(3\) |
![]() | Phần thực là \(4\) và phần ảo là \(-3i\) |
![]() | Phần thực là \(4\) và phần ảo là \(3i\) |
![]() | Phần thực là \(4\) và phần ảo là \(-3\) |
Tìm phần thực và phần ảo của số phức \(z=2-3i\).
![]() | Phần thực là \(2\) và phần ảo là \(3\) |
![]() | Phần thực là \(2\) và phần ảo là \(-3\) |
![]() | Phần thực là \(2\) và phần ảo là \(3i\) |
![]() | Phần thực là \(2\) và phần ảo là \(-3i\) |
Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng
![]() | \(-3\) |
![]() | \(3\) |
![]() | \(3i\) |
![]() | \(2i\) |
Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là
![]() | \(a^2+b^2\) và \(2a^2b^2\) |
![]() | \(a+b\) và \(a^2b^2\) |
![]() | \(a^2-b^2\) và \(2ab\) |
![]() | \(a-b\) và \(ab\) |
Điểm \(A\) trong hình vẽ trên biểu diễn cho số phức \(z\). Mệnh đề nào sau đây đúng.
![]() | Phần thực là \(-3\), phần ảo là \(2\) |
![]() | Phần thực là \(-3\), phần ảo là \(2i\) |
![]() | Phần thực là \(3\), phần ảo là \(-2i\) |
![]() | Phần thực là \(3\), phần ảo là \(2\) |
Cho số phức \(z=3-5i\). Gọi \(a,\,b\) lần lượt là phần thực và phần ảo của \(z\). Tính \(S=a+b\).
![]() | \(S=-8\) |
![]() | \(S=8\) |
![]() | \(S=2\) |
![]() | \(S=-2\) |