Ngân hàng bài tập

Bài tập tương tự

A

Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng

$\dfrac{1}{\mathrm{e}^3}$
$-2$
$-3$
$\dfrac{1}{\mathrm{e}^2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho phương trình \(\log_2^2(2x)-(m+2)\log_2x+m-2=0\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn \([1;2]\) là

\(\left(1;2\right)\)
\(\left[1;2\right]\)
\(\left[1;2\right)\)
\(\left[2;+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng

\(2\)
\(\dfrac{1}{2}\)
\(\log_2\left(\dfrac{3}{2}\right)\)
\(\log_{\tfrac{3}{2}}2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng với mọi \(a,\,b\in\mathbb{R}\), phương trình \(\log_2^2x-a\log_2x-3^b=0\) luôn có hai nghiệm phân biệt \(x_1,\,x_2\). Khi đó tích \(x_1\cdot x_2\) bằng

\(3^a\)
\(a\)
\(b\log_23\)
\(2^a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Phương trình \(\log_{2020}^2x+4\log_{\tfrac{1}{2020}}x+3=0\) có hai nghiệm \(x_1,\;x_2\). Tính giá trị của biểu thức \(x_1\cdot x_2\).

\(2020\)
\(2020^3\)
\(2020^4\)
\(2020^2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tính tích các nghiệm của phương trình $$\log_x(125x)\cdot\log_{25}^2x=1$$

\(630\)
\(\dfrac{1}{125}\)
\(\dfrac{630}{625}\)
\(\dfrac{7}{125}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết phương trình \(2\log_2x+3\log_x2=7\) có hai nghiệm thực \(x_1< x_2\). Tính giá trị của biểu thức \(T=\left(x_1\right)^{x_2}\).

\(T=64\)
\(T=32\)
\(T=8\)
\(T=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính tích các nghiệm của phương trình $$\log_3^2x-2\log_3x-7=0$$

\(2\)
\(-7\)
\(1\)
\(9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng phương trình \(\log_2^2(2x)-5\log_2x=0\) có hai nghiệm phân biệt \(x_1,\,x_2\). Tính \(x_1\cdot x_2\).

\(x_1\cdot x_2=8\)
\(x_1\cdot x_2=5\)
\(x_1\cdot x_2=3\)
\(x_1\cdot x_2=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính tổng các nghiệm của phương trình $$\log_2^2x-\log_29\cdot\log_3x=3$$

\(2\)
\(-2\)
\(\dfrac{17}{2}\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(T\) là tổng các nghiệm của phương trình $$\log_{\tfrac{1}{3}}^2x-5\log_3x+4=0$$Tính \(T\).

\(T=4\)
\(T=-5\)
\(T=84\)
\(T=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của phương trình $\log_2(x-1)+2\log_4(3x+7)=5$ là

$S=\left\{\dfrac{13}{3}\right\}$
$S=\big\{3\big\}$
$S=\big\{-3\big\}$
$S=\left\{3;-\dfrac{13}{3}\right\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $\log_2(3x-2)=0$ là

$x=2$
$x=\dfrac{5}{3}$
$x=\dfrac{4}{3}$
$x=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng

$\dfrac{15}{2}$
$\dfrac{9}{2}$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của phương trình $\log_2(x-1)+\log_2(x+3)=3$ là

$\big\{-1+2\sqrt{3}\big\}$
$\big\{-1+2\sqrt{3};\,-1-2\sqrt{3}\big\}$
$\big\{-1+\sqrt{10}\big\}$
$\big\{-1+\sqrt{10};\,-1-\sqrt{10}\big\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Phương trình $\log_2(x+1)=3$ có nghiệm là

$x=9$
$x=6$
$x=7$
$x=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu cặp số nguyên $(x,y)$ với $y\in\big[0;2021^3\big]$ thỏa mãn phương trình $\log_4\left(x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}\right)=\log_2(y-x)$?

$90854$
$90855$
$2021^2$
$2021^2-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên $x$ sao cho tồn tại duy nhất số thực $y$ thỏa mãn $\log_3\big(2+x+2xy-x^2\big)=\log_{\sqrt{3}}y$?

$5$
$3$
$4$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nghiệm của phương trình $\log_2(x-1)=3$ là

$x=10$
$x=9$
$x=8$
$x=7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Gọi $S$ là tập hợp các giá trị nguyên của $y$ sao cho ứng với mỗi $y$, tồn tại duy nhất một giá trị $x\in\left[\dfrac{3}{2};\dfrac{9}{2}\right]$ thỏa mãn $\log_3\big(x^3-6x^2+9x+y\big)=\log_2\big(-x^2+6x-5\big)$. Số phần tử của $S$ là

$7$
$1$
$8$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự