Có bao nhiêu số nguyên $y$ sao cho tồn tại số thực $x$ thỏa mãn $\log_2\left(4444+4x-2x^2\right)=2\cdot2^{y^2}+y^2+x^2-2x-2220$?
$13$ | |
$9$ | |
$11$ | |
$7$ |
Cho phương trình \(2^{1+2x}+15\cdot2^x-8=0\;(1)\). Khẳng định nào sau đây là đúng?
(1) có hai nghiệm dương | |
(1) có hai nghiệm trái dấu | |
(1) có hai nghiệm âm | |
(1) có một nghiệm |
Tìm số nghiệm của phương trình $$2^{x^3+2x^2-3x}\cdot3^{x-1}=1$$
\(2\) | |
\(1\) | |
\(0\) | |
\(3\) |
Tìm số nghiệm của phương trình $$2^{x^2-5x+6}+2^{1-x^2}=2\cdot2^{6-5x}+1$$
\(1\) | |
\(2\) | |
\(3\) | |
\(4\) |
Phương trình \(3^{1-x}=2+\left(\dfrac{1}{9}\right)^x\) có bao nhiêu nghiệm âm?
\(0\) | |
\(1\) | |
\(2\) | |
\(3\) |
Phương trình \(9^x-6^x=2^{2x+1}\) có bao nhiêu nghiệm âm?
\(3\) | |
\(0\) | |
\(1\) | |
\(2\) |
Tìm số nghiệm thực của phương trình $$4^x-2^{x+2}+3=0$$
\(3\) | |
\(2\) | |
\(1\) | |
\(0\) |
Tìm số nghiệm của phương trình $$16^x+3\cdot4^x+2=0.$$
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |
Phương trình \(\left(\sqrt{5}\right)^{x^2+4x+6}=\log_2{128}\) có bao nhiêu nghiệm?
\(1\) | |
\(3\) | |
\(2\) | |
\(0\) |
Số nghiệm thực phân biệt của phương trình \(2^{x^2}=\sqrt{3}\) là
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |
Phương trình $3^{2x}-(m+1)3^x+m=0$ có đúng một nghiệm khi
$m=0$ | |
$m>0$ | |
$m>0$, $m\neq1$ | |
$m=1$ hoặc $m\leq0$ |
Cho phương trình $9^x-2\cdot3^{x+2}-1=0$. Đặt $t=3^x$, $t>0$, phương trình đã cho trở thành phương trình nào dưới đây?
$2t^2-9t-2=0$ | |
$t^2-9t-1=0$ | |
$t^2-18t-1=0$ | |
$9t^2-2t-9=0$ |
Có bao nhiêu giá trị nguyên của tham số $m\in(-10;100)$ để tồn tại các số thực dương $a,\,b,\,x,\,y$ thỏa mãn $a\neq1$, $b\neq1$ và $a^{2x}=b^y=(ab)^{x+my}$?
$0$ | |
$100$ | |
$99$ | |
$98$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
$2020$ | |
$2019$ | |
$2021$ | |
$2022$ |
Nghiệm của phương trình $2^{2x-1}=8$ là
$x=\dfrac{5}{2}$ | |
$x=3$ | |
$x=2$ | |
$x=\dfrac{3}{2}$ |