Gọi $x_1,\,x_2$ là hai nghiệm của phương trình $5^{x-1}=2^{x^2-1}$. Tính $P=\left(x_1+1\right)\left(x_2+1\right)$.
$0$ | |
$2\log_25+2$ | |
$2\log_25-1$ | |
$\log_225$ |
Phương trình \(2^{x-2}=3^{x^2+2x-8}\) có một nghiệm dạng \(x=\log_ab-4\) với \(a,\,b\) là các số nguyên dương thuộc khoảng \((1;5)\). Khi đó, \(a+2b\) bằng
\(6\) | |
\(9\) | |
\(14\) | |
\(7\) |
Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng
\(2\) | |
\(\dfrac{1}{2}\) | |
\(\log_2\left(\dfrac{3}{2}\right)\) | |
\(\log_{\tfrac{3}{2}}2\) |
Tích các nghiệm của phương trình \(3^{x^2-3x+1}=81\) bằng
\(3\) | |
\(4\) | |
\(-3\) | |
\(5\) |
Tính tổng các nghiệm của phương trình $$\log_6\left(3\cdot4^x+2\cdot9^x\right)=x+1$$
\(2\) | |
\(1\) | |
\(0\) | |
\(3\) |
Tính tổng các nghiệm của phương trình $$3^{2x}-2\cdot3^{x+2}+27=0$$
\(9\) | |
\(18\) | |
\(3\) | |
\(27\) |
Tính tổng các nghiệm của phương trình $$3^{x+1}+3^{1-x}=10$$
\(1\) | |
\(3\) | |
\(-1\) | |
\(0\) |
Tính tổng các nghiệm của phương trình $$\log_5\left(6-5^x\right)=1-x$$
\(1\) | |
\(0\) | |
\(3\) | |
\(2\) |
Tính tổng các nghiệm của phương trình $$2^{x^2-2x+1}=8$$
\(0\) | |
\(-2\) | |
\(2\) | |
\(1\) |
Tính tổng các nghiệm thực của phương trình $$4^x-24\cdot2^x+128=0$$
\(12\) | |
\(7\) | |
\(24\) | |
\(11\) |
Phương trình $3^{2x}-(m+1)3^x+m=0$ có đúng một nghiệm khi
$m=0$ | |
$m>0$ | |
$m>0$, $m\neq1$ | |
$m=1$ hoặc $m\leq0$ |
Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng
$\dfrac{15}{2}$ | |
$\dfrac{9}{2}$ | |
$6$ | |
$4$ |
Cho phương trình $9^x-2\cdot3^{x+2}-1=0$. Đặt $t=3^x$, $t>0$, phương trình đã cho trở thành phương trình nào dưới đây?
$2t^2-9t-2=0$ | |
$t^2-9t-1=0$ | |
$t^2-18t-1=0$ | |
$9t^2-2t-9=0$ |
Có bao nhiêu giá trị nguyên của tham số $m\in(-10;100)$ để tồn tại các số thực dương $a,\,b,\,x,\,y$ thỏa mãn $a\neq1$, $b\neq1$ và $a^{2x}=b^y=(ab)^{x+my}$?
$0$ | |
$100$ | |
$99$ | |
$98$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
$2020$ | |
$2019$ | |
$2021$ | |
$2022$ |
Nghiệm của phương trình $2^{2x-1}=8$ là
$x=\dfrac{5}{2}$ | |
$x=3$ | |
$x=2$ | |
$x=\dfrac{3}{2}$ |
Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng
$\dfrac{1}{\mathrm{e}^3}$ | |
$-2$ | |
$-3$ | |
$\dfrac{1}{\mathrm{e}^2}$ |