Tập nghiệm của bất phương trình \(5^{x-1}\geq5^{x^2-x-9}\) là
![]() | \(\left[-2;4\right]\) |
![]() | \(\left[-4;2\right]\) |
![]() | \(\left(-\infty;-2\right]\cup\left[4;+\infty\right)\) |
![]() | \(\left(-\infty;-4\right]\cup\left[2;+\infty\right)\) |
Giải bất phương trình $$\log_x\left(\log_3\left(9^x-72\right)\right)\leq1$$
![]() | \(S=(-\infty;2]\) |
![]() | \(S=\left(\log_3\sqrt{73};2\right]\) |
![]() | \(S=\left(\log_3\sqrt{72};2\right]\) |
![]() | \(S=\left[\log_3\sqrt{73};2\right]\) |
Giải bất phương trình $$64\cdot9^x-84\cdot12^x+27\cdot16^x<0$$
![]() | \(\dfrac{9}{16}< x<\dfrac{3}{4}\) |
![]() | \(\left[\begin{array}{l}x<1\\ x>2\end{array}\right.\) |
![]() | \(1< x<2\) |
![]() | Vô nghiệm |
Tìm tập nghiệm của bất phương trình $$\left(\tan\dfrac{\pi}{7}\right)^{x^2-x-9}\leq\left(\tan\dfrac{\pi}{7}\right)^{x-1}$$
![]() | \(S=(-\infty;-2]\cup[4;+\infty)\) |
![]() | \(S=\left[-2\sqrt{2};2\sqrt{2}\right]\) |
![]() | \(S=\left(-\infty;-2\sqrt{2}\right]\cup\left[2\sqrt{2};+\infty\right)\) |
![]() | \(S=[-2;4]\) |
Tìm tập nghiệm của bất phương trình $$\left(\dfrac{1}{3}\right)^{x^2+2x}>\dfrac{1}{27}$$
![]() | \(S=(-3;1)\) |
![]() | \(S=(1;3)\) |
![]() | \(S=(-1;3)\) |
![]() | \(S=(-\infty;-3)\cup(1;+\infty)\) |
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
![]() | \(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) |
![]() | \(P=(-\infty;-2)\cup(2;+\infty)\) |
![]() | \(Q=(-2;2)\) |
![]() | \(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tập nghiệm của bất phương trình $$x^2+\left(\sqrt{3}+\sqrt{2}\right)x+\sqrt{6}\leq0$$là đoạn \([m;n]\). Tính \(m^2-n^2\).
![]() | \(m^2-n^2=\sqrt{3}-\sqrt{2}\) |
![]() | \(m^2-n^2=\sqrt{2}-\sqrt{3}\) |
![]() | \(m^2-n^2=1\) |
![]() | \(m^2-n^2=-1\) |
Tập nghiệm của bất phương trình \(\dfrac{3x}{4-x^2}\geq1\) là
![]() | \((-4;-2)\cup(1;2)\) |
![]() | \((-\infty;-4]\cup(-2;1]\cup(2;+\infty)\) |
![]() | \([-4;-2)\cup[1;2)\) |
![]() | \([-4;-2]\cup[1;2]\) |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
![]() | \((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
![]() | \((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) |
![]() | \([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
![]() | \([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Bất phương trình \(-3x^2+2x+5<0\) có tập nghiệm là
![]() | \(\left(-1;\dfrac{5}{3}\right)\) |
![]() | \(\left(-\infty;-1\right)\cup\left(\dfrac{5}{3};+\infty\right)\) |
![]() | \(\left[-1;\dfrac{5}{3}\right]\) |
![]() | \((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(3\) |
Có bao nhiêu giá trị nguyên của \(x\) thỏa mãn bất phương trình \(\dfrac{x^4-x^2}{x^2+5x+6}\leq0\)?
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(3\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{-2x^2+7x+7}{x^2-3x-10}\leq-1\) là
![]() | \(S=(-\infty;-2)\cup[1;3]\cup(5;+\infty)\) |
![]() | \(S=(-\infty;-2]\cup[1;3]\cup[5;+\infty)\) |
![]() | \(S=(-\infty;-2)\cup(1;3)\cup(5;+\infty)\) |
![]() | \(S=(-2;1]\cup[3;5)\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{x-7}{4x^2-19x+12}>0\) là
![]() | \(S=\left(-\infty;\dfrac{3}{4}\right)\cup(4;7)\) |
![]() | \(S=\left(\dfrac{3}{4};4\right)\cup(7;+\infty)\) |
![]() | \(S=\left(\dfrac{3}{4};4\right)\cup(4;+\infty)\) |
![]() | \(S=\left(\dfrac{3}{4};7\right)\cup(7;+\infty)\) |
Giải bất phương trình \(x^3+3x^2-6x-8\geq0\).
![]() | \(S=[-4;-1]\cup[2;+\infty)\) |
![]() | \(S=(-4;-1)\cup(2;+\infty)\) |
![]() | \(S=[-1;+\infty)\) |
![]() | \(S=(-\infty;-4]\cup[-1;2]\) |
Bất phương trình nào sau đây có tập nghiệm là \(\mathbb{R}\)?
![]() | \(-3x^2+x-1\geq0\) |
![]() | \(-3x^2+x-1>0\) |
![]() | \(-3x^2+x-1<0\) |
![]() | \(3x^2+x-1\leq0\) |
Giải bất phương trình $$x(x+5)\leq2\left(x^2+2\right)$$
![]() | \(S=(-\infty;1]\) |
![]() | \(S=[1;4]\) |
![]() | \(S=(-\infty;1]\cup[4;+\infty)\) |
![]() | \(S=[4;+\infty)\) |
Tìm tập nghiệm của bất phương trình \(-2x^2+3x-7\geq0\).
![]() | \(S=0\) |
![]() | \(S=\{0\}\) |
![]() | \(S=\varnothing\) |
![]() | \(S=\mathbb{R}\) |
Tập nghiệm của bất phương trình \(6x^2+x-1\leq0\) là
![]() | \(\left(-\dfrac{1}{2};\dfrac{1}{3}\right)\) |
![]() | \(\left(-\infty;-\dfrac{1}{2}\right]\cup\left[\dfrac{1}{3};+\infty\right)\) |
![]() | \(\left[-\dfrac{1}{2};\dfrac{1}{3}\right]\) |
![]() | \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(\dfrac{1}{3};+\infty\right)\) |
Tập nghiệm của bất phương trình \(\sqrt{2}x^2-\left(1+\sqrt{2}\right)x+1<0\) là
![]() | \(\left(\dfrac{\sqrt{2}}{2};1\right)\) |
![]() | \(\varnothing\) |
![]() | \(\left[\dfrac{\sqrt{2}}{2};1\right]\) |
![]() | \(\left(-\infty;\dfrac{\sqrt{2}}{2}\right)\cup(1;+\infty)\) |