Ngân hàng bài tập

Bài tập tương tự

B

Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?

\(y=\dfrac{x-1}{x}\)
\(y=2x^3\)
\(y=x^2+1\)
\(y=x^4+5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(-1;1)$
$(-2;0)$
$(-2;-1)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là

$4$
$6$
$5$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

$(2;+\infty)$
$(-2;2)$
$(0;2)$
$(-\infty;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(-\infty;0)$
$(2;+\infty)$
$(0;+\infty)$
$(-1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$

$21$
$10$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số $y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-6x+\dfrac{5}{6}$ đồng biến trên khoảng

$(3;+\infty)$
$(-\infty;3)$
$(-2;3)$
$(-2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?

$12$
$11$
$6$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-2)^2(1-x)$ với mọi $x\in\mathbb{R}$. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(1;2)$
$(1;+\infty)$
$(2;+\infty)$
$(-\infty;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:

Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?

$(1;3)$
$(-\infty;-3)$
$(3;4)$
$(4;5)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?

$y=x^4-x^2$
$y=x^3-x$
$y=\dfrac{x-1}{x+2}$
$y=x^3+x$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hình bên là đồ thị hàm số $y=f'(x)$.

Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?

$(0;1)$ và $(2;+\infty)$
$(1;2)$
$(2;+\infty)$
$(0;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào sau đây đồng biến trên $\mathbb{R}$?

$y=\dfrac{x-1}{x+3}$
$y=-x^3-x-2$
$y=x^4+2x^2+3$
$y=x^3+x^2+2x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng

$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$
$\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$
$\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$
$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.

$(-\infty;6]$
$(-\infty;3]$
$(-\infty;3)$
$[3;6]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$, có bảng xét dấu đạo hàm như sau:

Hàm số $y=3f(2x-1)-4x^3+15x^2-18x+1$ đồng biến trên khoảng nào dưới đây?

$(3;+\infty)$
$\left(1;\dfrac{3}{2}\right)$
$\left(\dfrac{5}{2};3\right)$
$\left(2;\dfrac{5}{2}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?

$[-2;0]$ và $[2;+\infty)$
$(-\infty;-2]$ và $[0;2]$
$[-2;2]$
$(-\infty;-2]$ và $[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự