Giá trị nào của \(a\) để $$\displaystyle\int\limits_{0}^{a}\left(3x^2+2\right)\mathrm{\,d}x=a^3+2?$$
\(1\) | |
\(2\) | |
\(0\) | |
\(3\) |
Cho \(a\) là số thực thỏa mãn \(|a|<2\) và \(\displaystyle\int\limits_a^2(2x+1)\mathrm{\,d}x=4\). Giá trị biểu thức \(1+a^3\) bằng
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |
Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng
\(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\) | |
\(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\) | |
\(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\) | |
\(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\) |
Biết \(\displaystyle\int\limits_1^2{\dfrac{\mathrm{\,d}x}{4x^2-4x+1}}=\dfrac{1}{a}+\dfrac{1}{b}\) thì \(a,\,b\) là nghiệm của phương trình nào sau đây?
\(x^2-5x+6=0\) | |
\(x^2+4x-12=0\) | |
\(2x^2-x-1=0\) | |
\(x^2-9=0\) |
Tìm số thực \(m\) thỏa mãn $$\displaystyle 9+\int\limits_{0}^{1}{(2m^{2}x-6m)\mathrm{\,d}x}=0.$$
\(m=1\) | |
\(m=2\) | |
\(m=3\) | |
\(m=4\) |
Tìm giá trị của \(b\) để \(\displaystyle\int\limits_1^b(2x-6)\mathrm{\,d}x=0\).
\(b=0\) hoặc \(b=1\) | |
\(b=0\) hoặc \(b=3\) | |
\(b=1\) hoặc \(b=5\) | |
\(b=5\) hoặc \(b=0\) |
Cho hàm số \(f(x) = A\sin(\pi x)+Bx^2\) (\(A,\,B\) là các hằng số) và \(\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x =\dfrac{8}{3}\). Tính \(B\).
\(1\) | |
\(-1\) | |
\(8\) | |
\(3\) |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
$2020$ | |
$2019$ | |
$2021$ | |
$2022$ |
Tìm $m$ để phương trình $\dfrac{2\sin x+\cos x+1}{\sin x-2\cos x+3}=m$ có nghiệm.
$\dfrac{1}{2}\leq m\leq2$ | |
$m\geq2$ | |
$m\leq-\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\leq m\leq2$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
$2\ln3$ | |
$\ln3$ | |
$\ln18$ | |
$2\ln2$ |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
$-77$ | |
$-17$ | |
$103$ | |
$43$ |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
$a+2b=0$ | |
$2a-b=0$ | |
$a-b=0$ | |
$a+b=0$ |
Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng
$7$ | |
$2$ | |
$3$ | |
$1$ |
Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là
$10$ | |
$7$ | |
$6$ | |
$8$ |
Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?
$4$ | |
$9$ | |
$15$ | |
$0$ |
Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.
$P=32$ | |
$P=130$ | |
$P=2$ | |
$P=16$ |
Biết $\displaystyle\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\dfrac{1}{a}\left(\sqrt{b^3}-c\right)$. Tính $Q=abc$.
$Q=120$ | |
$Q=15$ | |
$Q=-120$ | |
$Q=40$ |
Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Cho hàm số $y=x^4-4x^2+m$. Tìm $m$ để đồ thị của hàm số cắt trục hoành tại $4$ điểm phân biệt sao cho hình phẳng giới hạn bởi đồ thị với trục hoành có diện tích phần phía trên trục hoành bằng diện tích phần phía dưới trục hoành. Khi đó $m=\dfrac{a}{b}$ với $\dfrac{a}{b}$ là phân số tối giản. Tính $a+2b$.
$37$ | |
$38$ | |
$0$ | |
$29$ |
Tính $I=\displaystyle\displaystyle\int\limits_{0}^{a}\dfrac{x^3+x}{\sqrt{x^2+1}}\mathrm{\,d}x$.
$I=\left(a^2+1\right)\sqrt{a^2+1}+1$ | |
$I=\left(a^2+1\right)\sqrt{a^2+1}-1$ | |
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}-1\right]$ | |
$I=\dfrac{1}{3}\left[\left(a^2+1\right)\sqrt{a^2+1}+1\right]$ |