Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?
$\overrightarrow{u}=(-1;-2;1)$ | |
$\overrightarrow{u}=(1;2;1)$ | |
$\overrightarrow{u}=(1;-2;1)$ | |
$\overrightarrow{u}=(-1;2;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u_1}=(2;1;-1)$ | |
$\overrightarrow{u_2}=(1;2;3)$ | |
$\overrightarrow{u_3}=(1;-2;3)$ | |
$\overrightarrow{u_4}=(2;1;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u}=\left(1;-2;1\right)$ | |
$\overrightarrow{u}=\left(1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;-2;1\right)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+5}{3}$. Tìm tọa độ một vectơ chỉ phương của đường thẳng $d$.
$\overrightarrow{a}=(2;-1;3)$ | |
$\overrightarrow{b}=(2;1;3)$ | |
$\overrightarrow{u}=(3;1;-5)$ | |
$\overrightarrow{q}=(-3;1;5)$ |
Trong không gian $Oxyz$, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ $O$ và điểm $M(1;-2;1)$?
$\overrightarrow{u_1}=(1;1;1)$ | |
$\overrightarrow{u_2}=(1;2;1)$ | |
$\overrightarrow{u_3}=(0;1;0)$ | |
$\overrightarrow{u_1}=(1;-2;1)$ |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-3}{2}=\dfrac{y-4}{-5}=\dfrac{z+1}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(d\)?
\(\overrightarrow{u_2}=\left(2;4;-1\right)\) | |
\(\overrightarrow{u_1}=\left(2;-5;3\right)\) | |
\(\overrightarrow{u_3}=\left(2;5;3\right)\) | |
\(\overrightarrow{u_4}=\left(3;4;1\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của đường thẳng đi qua hai điểm \(A(1;1;2)\) và \(B(6;11;-3)\)?
\(\dfrac{x-5}{1}=\dfrac{y-10}{2}=\dfrac{z+5}{2}\) | |
\(\dfrac{x+5}{1}=\dfrac{y+10}{2}=\dfrac{z-5}{2}\) | |
\(\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}\) | |
\(\dfrac{x+1}{1}=\dfrac{y+1}{2}=\dfrac{z+2}{-1}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\begin{cases}x=2+t\\y=3-t\\z=1\end{cases}\). Tìm tọa độ một vectơ chỉ phương của \(\Delta\).
\(\overrightarrow{u}=(1;-1;0)\) | |
\(\overrightarrow{u}=(1;-1;1)\) | |
\(\overrightarrow{u}=(2;3;1)\) | |
\(\overrightarrow{u}=(2;3;0)\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{1}\), mặt phẳng \((P)\colon x+y-2z+5=0\) và điểm \(A(1;-1;2)\). Đường thẳng \(\Delta\) cắt \(d\) và \((P)\) lần lượt tại \(M\) và \(N\) sao cho \(A\) là trung điểm của \(MN\). Một vectơ chỉ phương của \(\Delta\) là
\(\vec{u}=(2;3;2)\) | |
\(\vec{u}=(1;-1;2)\) | |
\(\vec{u}=(-3;5;1)\) | |
\(\vec{u}=(4;5;-13)\) |
Trong không gian \(Oxyz\), gọi \(d'\) là hình chiếu vuông góc của đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y-2}{3}=\dfrac{z+3}{1}\) trên mặt phẳng tọa độ \((Oxy)\). Vectơ nào dưới đây là một vectơ chỉ phương của \(d'\)?
\(\vec{u}=(2;3;0)\) | |
\(\vec{u}=(2;3;1)\) | |
\(\vec{u}=(-2;3;0)\) | |
\(\vec{u}=(2;-3;0)\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \(d\colon\begin{cases}x=1+t\\ y=4\\ z=3-2t\end{cases}\)?
\(\vec{u}=(1;4;3)\) | |
\(\vec{u}=(1;4;-2)\) | |
\(\vec{u}=(1;0;-2)\) | |
\(\vec{u}=(1;0;2)\) |
Trong không gian \(Oxyz\), đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-4}=\dfrac{z-7}{1}\) nhận vectơ nào dưới đây là một vectơ chỉ phương?
\(\vec{a}=(-2;-4;1)\) | |
\(\vec{b}=(2;4;1)\) | |
\(\vec{c}=(1;-4;2)\) | |
\(\vec{d}=(2;-4;1)\) |
Vectơ nào sau đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm \(A(a;0)\) và \(B(0;b)\)?
\(\vec{u}=(a;-b)\) | |
\(\vec{v}=(a;b)\) | |
\(\vec{m}=(b;a)\) | |
\(\vec{n}=(-b;a)\) |
Đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(M(a;b)\) có vectơ chỉ phương là
\(\vec{m}=(0;a+b)\) | |
\(\vec{n}=(a;b)\) | |
\(\vec{u}=(a;-b)\) | |
\(\vec{v}=(-a;b)\) |
Vectơ chỉ phương của đường thẳng đi qua hai điểm \(A(-3;2)\) và \(B(1;4)\) có tọa độ là
\((-1;2)\) | |
\((2;1)\) | |
\((-2;6)\) | |
\((1;1)\) |
Đường thẳng \(\Delta\) đi qua hai điểm \(P\left(-1;2\right)\) và \(S\left(5;1\right)\). Vectơ nào sau đây không phải vectơ chỉ phương của \(\Delta\)?
\(\overrightarrow{a}=\left(5;-1\right)\) | |
\(\overrightarrow{b}=\left(6;-1\right)\) | |
\(\overrightarrow{u}=\left(-6;1\right)\) | |
\(\overrightarrow{v}=\left(12;-2\right)\) |
Trong không gian $Oxyz$, viết phương trình đường thẳng đi qua hai điểm $P(1;1;-1)$, $Q(2;3;2)$.
$\dfrac{x-1}{2}=\dfrac{y-1}{3}=\dfrac{z+1}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z+1}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{-1}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;-1;-1)$ và $N(5;5;1)$. Đường thẳng $MN$ có phương trình là
$\begin{cases}x=5+2t\\ y=5+3t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=5+t\\ y=5+2t\\ z=1+3t\end{cases}$ | |
$\begin{cases}x=1+2t\\ y=-1+3t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+2t\\ y=-1+t\\ z=-1+3t\end{cases}$ |