Ngân hàng bài tập

Bài tập tương tự

B

Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{1}{2x-1}\mathrm{\,d}x=\ln a\). Giá trị của \(a\) là

\(81\)
\(27\)
\(3\)
\(9\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_0^13^{2x+1}\mathrm{\,d}x\) bằng

\(\dfrac{27}{\ln9}\)
\(\dfrac{9}{\ln9}\)
\(\dfrac{4}{\ln3}\)
\(\dfrac{12}{\ln3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{2}}\left(\sin{2x}+\sin x\right)\mathrm{\,d}x\).

\(5\)
\(3\)
\(4\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2-9}\).

\(I=\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=-\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=\dfrac{1}{6}\ln2\)
\(I=\ln\sqrt[6]{2}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int\limits_1^2{\dfrac{\mathrm{\,d}x}{4x^2-4x+1}}=\dfrac{1}{a}+\dfrac{1}{b}\) thì \(a,\,b\) là nghiệm của phương trình nào sau đây?

\(x^2-5x+6=0\)
\(x^2+4x-12=0\)
\(2x^2-x-1=0\)
\(x^2-9=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{2x^2+3x-6}{2x+1}\mathrm{\,d}x\) có giá trị là

\(\dfrac{3}{2}-\dfrac{7}{2}\ln3\)
\(\dfrac{3}{2}+\dfrac{7}{2}\ln3\)
\(5\ln3\)
\(-2\ln3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_2^4\dfrac{x}{x-1}\mathrm{\,d}x\) bằng

\(2-\ln3\)
\(1+\ln3\)
\(\dfrac{2}{5}\)
\(2+\ln3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị tích phân \(\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x\) bằng

\(\ln\dfrac{5}{3}\)
\(1+\ln\dfrac{4}{3}\)
\(\ln\dfrac{3}{5}\)
\(1-\ln\dfrac{3}{5}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{x+1}+2x\), \(\forall x>-1\). Biết \(F(0)=0\). Giá trị \(F(1)\) bằng

\(3+\ln2\)
\(\ln2\)
\(2+\ln2\)
\(1+\ln2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_1^{\ln3}\dfrac{1}{e^x}\mathrm{\,d} x.\)

\(\dfrac{1}{e-2}\)
\(\dfrac{3-e}{3e}\)
\(3e^{-1}\)
\(e^2-2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng

$\dfrac{25}{6}$
$\dfrac{7}{6}$
$\dfrac{43}{6}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính tích phân $\displaystyle\int\limits_{0}^{1}(2x+1)^5\mathrm{\,d}x$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.

$f(5)=2020-\dfrac{1}{2}\ln2$
$f(5)=2021-\ln2$
$f(5)=2021+\ln2$
$f(5)=2020+\ln2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.

$I=20$
$I=8$
$I=18$
$I=16$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\displaystyle\displaystyle\int\limits_{4}^{9}f(x)\mathrm{d}x=10$. Tính tích phân $J=\displaystyle\displaystyle\int\limits_{0}^{1}f(5x+4)\mathrm{d}x$.

$J=2$
$J=10$
$J=50$
$J=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tích phân $\displaystyle\displaystyle\int\limits_{0}^{10}x\mathrm{e}^{30x}\mathrm{\,d}x$ bằng

$\dfrac{1}{900}\left(299\mathrm{e}^{300}+1\right)$
$300-900\mathrm{e}^{300}$
$-300+900\mathrm{e}^{300}$
$\dfrac{1}{900}\left(299\mathrm{e}^{300}-1\right)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{x-3}{x+1}\mathrm{\,d}x$.

$I=2-5\ln2$
$I=1-4\ln2$
$I=\dfrac{7}{2}-5\ln3$
$I=4\ln3-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=3x^2-2x+3+4\displaystyle\int\limits_{0}^{1}xf\left(x^2\right)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x$ bằng

$17$
$11$
$14$
$21$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ xác định và liên tục trên đoạn $[0;1]$ thỏa mãn $f(x)=x^3+\displaystyle\int\limits_{0}^{1}x^3f\left(x^2\right)\mathrm{\,d}x$, $\forall x\in[0;1]$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.

$\dfrac{1}{4}$
$\dfrac{4}{15}$
$\dfrac{13}{20}$
$\dfrac{23}{60}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\left(3x^2+\mathrm{e}^x+\dfrac{1}{x+1}\right)\mathrm{d}x$.

1 lời giải Sàng Khôn
Lời giải Tương tự