Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
![]() | \(5\) |
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{2x^2+3x+1}{2x+3}\mathrm{\,d}x=a\ln5+b\ln3+c\). Tính \(T=a+b+2c\).
![]() | \(T=3\) |
![]() | \(T=0\) |
![]() | \(T=1\) |
![]() | \(T=2\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
![]() | \(S=2\) |
![]() | \(S=-2\) |
![]() | \(S=5\) |
![]() | \(S=10\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x=\dfrac{1}{a}+b\ln\dfrac{3}{2}\) với \(a,\,b>0\). Tính giá trị của \(S=a+2b\).
![]() | \(S=5\) |
![]() | \(S=6\) |
![]() | \(S=9\) |
![]() | \(S=3\) |
Biết \(I=\displaystyle\int\limits_1^2\dfrac{x^2+2x}{x+1}\mathrm{\,d}x=\dfrac{5}{a}+\ln b-\ln c\). Tính giá trị biểu thức \(S=a-b+c\).
![]() | \(S=7\) |
![]() | \(S=3\) |
![]() | \(S=-3\) |
![]() | \(S=1\) |
Cho biết \(\displaystyle\int\limits_0^1\dfrac{x^2+x+1}{x+1}\ \mathrm{\,d}x=a+b\ln2\), trong đó \(a,\,b\) là hai số hữu tỉ, thì
![]() | \(a+b=\dfrac{1}{2}\) |
![]() | \(a+b=\dfrac{3}{2}\) |
![]() | \(a+b=-\dfrac{1}{2}\) |
![]() | \(a+b=\dfrac{5}{2}\) |
Cho tích phân \(\displaystyle\int\limits_1^2\dfrac{x^3-3x^2+2x}{x+1}\mathrm{\,d}x=a+b\ln2+c\ln3\) với \(a,\,b,\,c\in\mathbb{R}\). Chọn khẳng định đúng trong các khẳng định sau:
![]() | \(b<0\) |
![]() | \(c>0\) |
![]() | \(a<0\) |
![]() | \(a+b+c>0\) |
Tính tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2-9}\).
![]() | \(I=\dfrac{1}{6}\ln\dfrac{1}{2}\) |
![]() | \(I=-\dfrac{1}{6}\ln\dfrac{1}{2}\) |
![]() | \(I=\dfrac{1}{6}\ln2\) |
![]() | \(I=\ln\sqrt[6]{2}\) |
Tích phân \(\displaystyle\int\limits_2^4\dfrac{x}{x-1}\mathrm{\,d}x\) bằng
![]() | \(2-\ln3\) |
![]() | \(1+\ln3\) |
![]() | \(\dfrac{2}{5}\) |
![]() | \(2+\ln3\) |
Tích phân \(\displaystyle\int\limits_1^2\dfrac{\mathrm{\,d}x}{2x+1}\) bằng
![]() | \(\log\dfrac{5}{3}\) |
![]() | \(\dfrac{2}{15}\) |
![]() | \(\dfrac{1}{2}\ln\dfrac{5}{3}\) |
![]() | \(\dfrac{16}{225}\) |
Giá trị tích phân \(\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x\) bằng
![]() | \(\ln\dfrac{5}{3}\) |
![]() | \(1+\ln\dfrac{4}{3}\) |
![]() | \(\ln\dfrac{3}{5}\) |
![]() | \(1-\ln\dfrac{3}{5}\) |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{x-3}{x+1}\mathrm{\,d}x$.
![]() | $I=2-5\ln2$ |
![]() | $I=1-4\ln2$ |
![]() | $I=\dfrac{7}{2}-5\ln3$ |
![]() | $I=4\ln3-1$ |
Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng
![]() | \(1\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(-3\) |
Cho \(\displaystyle\int\limits_1^3 \dfrac{\left(x+6\right)^{2017}}{x^{2019}}\mathrm{\,d}x=\dfrac{a^{2018}-3^{2018}}{6\cdot 2018}\). Tính \(a\).
![]() | \(7\) |
![]() | \(9\) |
![]() | \(6\) |
![]() | \(8\) |
Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).
![]() | \(1\) |
![]() | \(0\) |
![]() | \(-1\) |
![]() | \(3\) |
Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng
![]() | \(\dfrac{3}{2}\) |
![]() | \(\dfrac{1}{2}\) |
![]() | \(1\) |
![]() | \(2\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
![]() | \(a+b=0\) |
![]() | \(a-b=0\) |
![]() | \(a+2b=0\) |
![]() | \(2a-b=0\) |
Nguyên hàm của hàm số \(f(x)=\dfrac{2x^2+1}{x}\) là
![]() | \(x^2+\ln|x|\) |
![]() | \(x^2+\ln x+C\) |
![]() | \(x^2-\ln|x|+C\) |
![]() | \(x^2+\ln|x|+C\) |
Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\), biết \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f\left(\tan x\right)\mathrm{\,d}x=4\) và \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2\cdot f(x)}{x^2+1}\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\).
![]() | \(6\) |
![]() | \(1\) |
![]() | \(0\) |
![]() | \(2\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
![]() | \(S=3\) |
![]() | \(S=6\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |