Ngân hàng bài tập

Bài tập tương tự

A

Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_0^1\dfrac{2x^2+3x+1}{2x+3}\mathrm{\,d}x=a\ln5+b\ln3+c\). Tính \(T=a+b+2c\).

\(T=3\)
\(T=0\)
\(T=1\)
\(T=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).

\(S=2\)
\(S=-2\)
\(S=5\)
\(S=10\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x=\dfrac{1}{a}+b\ln\dfrac{3}{2}\) với \(a,\,b>0\). Tính giá trị của \(S=a+2b\).

\(S=5\)
\(S=6\)
\(S=9\)
\(S=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(I=\displaystyle\int\limits_1^2\dfrac{x^2+2x}{x+1}\mathrm{\,d}x=\dfrac{5}{a}+\ln b-\ln c\). Tính giá trị biểu thức \(S=a-b+c\).

\(S=7\)
\(S=3\)
\(S=-3\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho biết \(\displaystyle\int\limits_0^1\dfrac{x^2+x+1}{x+1}\ \mathrm{\,d}x=a+b\ln2\), trong đó \(a,\,b\) là hai số hữu tỉ, thì

\(a+b=\dfrac{1}{2}\)
\(a+b=\dfrac{3}{2}\)
\(a+b=-\dfrac{1}{2}\)
\(a+b=\dfrac{5}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tích phân \(\displaystyle\int\limits_1^2\dfrac{x^3-3x^2+2x}{x+1}\mathrm{\,d}x=a+b\ln2+c\ln3\) với \(a,\,b,\,c\in\mathbb{R}\). Chọn khẳng định đúng trong các khẳng định sau:

\(b<0\)
\(c>0\)
\(a<0\)
\(a+b+c>0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2-9}\).

\(I=\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=-\dfrac{1}{6}\ln\dfrac{1}{2}\)
\(I=\dfrac{1}{6}\ln2\)
\(I=\ln\sqrt[6]{2}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_2^4\dfrac{x}{x-1}\mathrm{\,d}x\) bằng

\(2-\ln3\)
\(1+\ln3\)
\(\dfrac{2}{5}\)
\(2+\ln3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tích phân \(\displaystyle\int\limits_1^2\dfrac{\mathrm{\,d}x}{2x+1}\) bằng

\(\log\dfrac{5}{3}\)
\(\dfrac{2}{15}\)
\(\dfrac{1}{2}\ln\dfrac{5}{3}\)
\(\dfrac{16}{225}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị tích phân \(\displaystyle\int\limits_0^1\dfrac{x+4}{x+3}\mathrm{\,d}x\) bằng

\(\ln\dfrac{5}{3}\)
\(1+\ln\dfrac{4}{3}\)
\(\ln\dfrac{3}{5}\)
\(1-\ln\dfrac{3}{5}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{x-3}{x+1}\mathrm{\,d}x$.

$I=2-5\ln2$
$I=1-4\ln2$
$I=\dfrac{7}{2}-5\ln3$
$I=4\ln3-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng

\(1\)
\(0\)
\(2\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_1^3 \dfrac{\left(x+6\right)^{2017}}{x^{2019}}\mathrm{\,d}x=\dfrac{a^{2018}-3^{2018}}{6\cdot 2018}\). Tính \(a\).

\(7\)
\(9\)
\(6\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).

\(1\)
\(0\)
\(-1\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng

\(\dfrac{3}{2}\)
\(\dfrac{1}{2}\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?

\(a+b=0\)
\(a-b=0\)
\(a+2b=0\)
\(2a-b=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nguyên hàm của hàm số \(f(x)=\dfrac{2x^2+1}{x}\) là

\(x^2+\ln|x|\)
\(x^2+\ln x+C\)
\(x^2-\ln|x|+C\)
\(x^2+\ln|x|+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\), biết \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}f\left(\tan x\right)\mathrm{\,d}x=4\) và \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2\cdot f(x)}{x^2+1}\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\).

\(6\)
\(1\)
\(0\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).

\(S=3\)
\(S=6\)
\(S=-2\)
\(S=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự