Cho \((H)\) là hình phẳng giới hạn bởi đồ thị của các hàm số \(y=\sqrt{x}\), \(y=0\), \(y=2-x\). Diện tích của \((H)\) là
![]() | \(\dfrac{4\sqrt{2}-1}{3}\) |
![]() | \(\dfrac{8\sqrt{2}+3}{6}\) |
![]() | \(\dfrac{7}{6}\) |
![]() | \(\dfrac{5}{6}\) |
Tính diện tích \(S\) của hình phẳng (phần gạch sọc) trong hình.
![]() | \(S=\dfrac{8}{3}\) |
![]() | \(S=\dfrac{10}{3}\) |
![]() | \(S=\dfrac{11}{3}\) |
![]() | \(S=\dfrac{7}{3}\) |
Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).
![]() | \(\dfrac{5}{6}\) |
![]() | \(\dfrac{7}{6}\) |
![]() | \(\dfrac{2}{3}\) |
![]() | \(\dfrac{3}{5}\) |
Cho hình phẳng giới hạn bởi đồ thị các hàm số \(y=\sqrt{x}\), đường thẳng \(y=2-x\) và trục hoành (phần gạch chéo trong hình vẽ).
Thể tích của khối tròn xoay sinh bởi hình phẳng trên khi quay quanh trục \(Ox\) bằng
![]() | \(\dfrac{5\pi}{4}\) |
![]() | \(\dfrac{4\pi}{3}\) |
![]() | \(\dfrac{7\pi}{6}\) |
![]() | \(\dfrac{5\pi}{6}\) |
Cho \((H)\) là hình phẳng giới hạn bởi các đường \(y=\sqrt{2x}\), \(y=2x-2\) và trục hoành. Tính diện tích của \((H)\).
![]() | \(S=\dfrac{5}{3}\) |
![]() | \(S=\dfrac{16}{3}\) |
![]() | \(S=\dfrac{10}{3}\) |
![]() | \(S=\dfrac{8}{3}\) |
Gọi tam giác cong \(OAB\) là hình phẳng giới hạn bởi đồ thị các hàm số \(y=2x^2\), \(y=3-x\), \(y=0\) (như hình vẽ).
Tính diện tích \(S\) của tam giác cong \(OAB\).
![]() | \(S=\dfrac{8}{3}\) |
![]() | \(S=\dfrac{4}{3}\) |
![]() | \(S=\dfrac{5}{3}\) |
![]() | \(S=\dfrac{10}{3}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=x^2\), \(y=-\dfrac{1}{3}x+\dfrac{4}{3}\) và trục hoành như hình vẽ.
![]() | \(\dfrac{7}{3}\) |
![]() | \(\dfrac{56}{3}\) |
![]() | \(\dfrac{39}{2}\) |
![]() | \(\dfrac{11}{6}\) |
Tính diện tích phần hình phẳng gạch chéo (tam giác cong \(OAB\)) trong hình vẽ.
![]() | \(\dfrac{5}{6}\) |
![]() | \(\dfrac{5\pi}{6}\) |
![]() | \(\dfrac{8}{15}\) |
![]() | \(\dfrac{8\pi}{15}\) |
Diện tích của hình phẳng giới hạn bởi các đường \(y=\sqrt{x}\), \(y=2-x\) và trục hoành bằng
![]() | \(\dfrac{5}{6}\) |
![]() | \(\dfrac{5\pi}{6}\) |
![]() | \(\dfrac{7}{6}\) |
![]() | \(\dfrac{7\pi}{6}\) |
Tính thể tích khối tròn xoay được tạo bởi hình phẳng giới hạn bởi ba đường \(y=\sqrt{x}\), \(y=2-x\) và \(y=0\) quanh trục \(Ox\).
![]() | \(\dfrac{3\pi}{2}\) |
![]() | \(\dfrac{5\pi}{6}\) |
![]() | \(\pi\) |
![]() | \(\dfrac{2\pi}{3}\) |
Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng
![]() | \(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\) |
![]() | \(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |
Diện tích hình phẳng \(S\) đối với hình vẽ trên là
![]() | \(S=-\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\) |
![]() | \(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\) |
![]() | \(S=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\) |
![]() | \(S=\displaystyle\int\limits_{a}^{b}-f(x)\mathrm{\,d}x\) |
Cho đồ thị hàm số \(y=f(x)\) như hình vẽ và \(\displaystyle\int\limits_{-2}^{0}f(x)\mathrm{\,d}x=a\), \(\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=b\). Tính diện tích của phần được gạch chéo theo \(a\) và \(b\).
![]() | \(\dfrac{a+b}{2}\) |
![]() | \(a-b\) |
![]() | \(b-a\) |
![]() | \(a+b\) |
Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), trục hoành và hai đường thẳng \(x=-1\), \(x=2\) (như hình vẽ).
Đặt \(a=\displaystyle\int\limits_{-1}^{0}f(x)\mathrm{\,d}x\), \(b=\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\), mệnh đề nào dưới đây đúng?
![]() | \(S=b-a\) |
![]() | \(S=b+a\) |
![]() | \(S=a-b\) |
![]() | \(S=-a-b\) |
Một mảnh vườn hình elip có độ dài trục lớn $8$m và độ dài trục nhỏ $6$m. Người ta cần trồng rau trên dải đất rộng $4$m như hình vẽ.
Hỏi cần bao nhiêu tiền để trồng rau trên dải đất đó, biết rằng kinh phí trồng rau là $70000$ đồng/m$^2$?
![]() | $1.607.107$ đồng |
![]() | $803.553$ đồng |
![]() | $267.851$ đồng |
![]() | $2.638.938$ đồng |
Cho hàm số bậc bốn $y=f(x)$. Biết rằng hàm số $g(x)=\ln f(x)$ có bảng biến thiên như sau:
Diện tích hình phẳng giới hạn bởi các đường $y=f'(x)$ và $y=g'(x)$ thuộc khoảng nào dưới đây?
![]() | $(5;6)$ |
![]() | $(4;5)$ |
![]() | $(2;3)$ |
![]() | $(3;4)$ |
Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng
![]() | $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
Tính diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới.
![]() | $1$ |
![]() | $\dfrac{7}{6}$ |
![]() | $\dfrac{5}{3}$ |
![]() | $\dfrac{7}{5}$ |
Công thức tính thể tích vật thể tròn xoay thu được khi cho hình phẳng (phần gạch sọc của hình vẽ) giới hạn bởi các đường $y=\sqrt{x+2}$, $Ox$, $x=1$ quay xung quanh trục $Ox$ là
![]() | $\pi\displaystyle\displaystyle\int\limits_{-2}^{1}(x+2)\mathrm{d}x$ |
![]() | $\pi\displaystyle\displaystyle\int\limits_{1}^{4}\sqrt[4]{x+2}\mathrm{d}x$ |
![]() | $\pi\displaystyle\displaystyle\int\limits_{-2}^{1}\sqrt{x+2}\mathrm{d}x$ |
![]() | $\pi\displaystyle\displaystyle\int\limits_{1}^{4}(x+2)\mathrm{d}x$ |
Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành (phần gạch sọc như hình vẽ).
Mệnh đề nào sau đây là đúng?
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x$ |
![]() | $S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x\right|$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$ |