Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\) | |
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\) |
Trong không gian \(Oxyz\), cho điểm \(M(3;1;0)\) và \(\overrightarrow{MN}=(-1;-1;0)\). Tìm tọa độ của điểm \(N\).
\(N(4;2;0)\) | |
\(N(-4;2;0)\) | |
\(N(-2;0;0)\) | |
\(N(2;0;0)\) |
Trong không gian \(Oxyz\), hình chiếu của điểm \(M(-1;0;3)\) theo phương vectơ \(\vec{v}=(1;-2;1)\) trên mặt phẳng \((P)\colon x-y+z+2=0\) có tọa độ là
\((2;-2;-2)\) | |
\((-1;0;1)\) | |
\((-2;2;2)\) | |
\((1;0;-1)\) |
Trong mặt phẳng $Oxy$, cho các điểm $A(1;3)$, $B(4;0)$, $C(2;-5)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}$ là
$M\left(1;18\right)$ | |
$M\left(-1;18\right)$ | |
$M\left(1;-18\right)$ | |
$M\left(-18;1\right)$ |
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(P(4;5)\) và \(S(3;-1)\). Tìm tọa độ điểm \(H\) thỏa mãn $$\overrightarrow{OH}=2\overrightarrow{OP}-3\overrightarrow{OS}.$$
\(H(-1;13)\) | |
\(H(-1;7)\) | |
\(H(-6;-17)\) | |
\(H(1;-13)\) |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là
$(-1;4;-5)$ | |
$(1;-4;5)$ | |
$(3;0;1)$ | |
$(3;0;-1)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?
$\overrightarrow{n_1}=(2;1;-1)$ | |
$\overrightarrow{n_3}=(1;-1;3)$ | |
$\overrightarrow{n_4}=(2;-1;3)$ | |
$\overrightarrow{n_2}=(2;1;3)$ |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t \\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
$(1;2;3)$ | |
$(2;2;3)$ | |
$(1;2;-3)$ | |
$(2;-2;-3)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là
$(0;-4;3)$ | |
$(-3;0;4)$ | |
$(0;3;4)$ | |
$(0;-3;4)$ |
Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?
$\overrightarrow{u}=(-1;-2;1)$ | |
$\overrightarrow{u}=(1;2;1)$ | |
$\overrightarrow{u}=(1;-2;1)$ | |
$\overrightarrow{u}=(-1;2;1)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-6=0$. Điểm nào sau đây thuộc mặt phẳng $(P)$?
$M(1;-1;1)$ | |
$I(2;0;-2)$ | |
$N(1;0;-2)$ | |
$P(3;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Hình chiếu vuông góc của điểm $A$ trên mặt phẳng $(Oxy)$ là điểm
$M(0;0;3)$ | |
$N(1;2;0)$ | |
$Q(0;2;0)$ | |
$P(1;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Điểm đối xứng với $A$ qua mặt phẳng $(Oxz)$ có tọa độ là
$(1;-2;3)$ | |
$(1;2;-3)$ | |
$(-1;-2;-3)$ | |
$(-1;2;3)$ |
Trong không gian $Oxyz$, mặt phẳng $(P)\colon x+y+z+1=0$ có một vectơ pháp tuyến là
$\overrightarrow{n_1}=(-1;1;1)$ | |
$\overrightarrow{n_4}=(1;1;-1)$ | |
$\overrightarrow{n_3}=(1;1;1)$ | |
$\overrightarrow{n_2}=(1;-1;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u_1}=(2;1;-1)$ | |
$\overrightarrow{u_2}=(1;2;3)$ | |
$\overrightarrow{u_3}=(1;-2;3)$ | |
$\overrightarrow{u_4}=(2;1;1)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$. Hình chiếu vuông góc của $A$ lên mặt phẳng $(Oxy)$ có tọa độ là
$(0;2;-3)$ | |
$(1;0;-3)$ | |
$(1;2;0)$ | |
$(1;0;0)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u}=\left(1;-2;1\right)$ | |
$\overrightarrow{u}=\left(1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;-2;1\right)$ |
Trong không gian $Oxyz$, cho hai điểm $A\left(2;-2;1\right)$, $B\left(1;3;-1\right)$. Tọa độ của vectơ $\overrightarrow{AB}$ là
$\left(3;1;0\right)$ | |
$\left(-1;5;-2\right)$ | |
$\left(1;-5;2\right)$ | |
$\left(1;1;2\right)$ |