Mặt phẳng \((P)\) tiếp xúc với mặt cầu \((S)\colon(x-1)^2+(y+3)^2+(z-2)^2=49\) tại điểm \(M(7;-1;5)\) có phương trình là
\(6x+2y+3z-55=0\) | |
\(6x+2y+3z+55=0\) | |
\(3x+y+z-22=0\) | |
\(3x+y+z+22=0\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có đường kính \(AB\), với \(A(6;2;-5)\), \(B(-4;0;7)\). Viết phương trình mặt phẳng \((P)\) tiếp xúc với \((S)\) tại điểm \(A\).
\((P)\colon5x+y-6z+62=0\) | |
\((P)\colon5x+y-6z-62=0\) | |
\((P)\colon5x-y-6z-62=0\) | |
\((P)\colon5x+y+6z+62=0\) |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;-1)$, $B(-1;0;4)$, $C(0;-2;-1)$. Phương trình mặt phẳng đi qua $A$ và vuông góc với $BC$ là
$x-2y-5z+5=0$ | |
$x-2y-5=0$ | |
$2x-y+5z-5=0$ | |
$x-2y-5z-5=0$ |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian $Oxyz$, cho hai điểm $A(1;0;0)$ và $B(4;1;2)$. Mặt phẳng đi qua $A$ vuông góc với $AB$ có phương trình là
$3x+y+2z-17=0$ | |
$3x+y+2z-3=0$ | |
$5x+y+2z-5=0$ | |
$5x+y+2z-25=0$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
$x+y-2z-4=0$ | |
$2x-y-3z-2=0$ | |
$x+y+z-1=0$ | |
$2x-y-z-2=0$ |
Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là
$2x-5y+3z-38=0$ | |
$2x+4y-z+19=0$ | |
$2x+4y-z-19=0$ | |
$2x+4y-z+11=0$ |
Trong không gian $Oxyz$, mặt phẳng đi qua điểm $M\left(-1;-2;5\right)$ và vuông góc với hai mặt phẳng $x+2y-3z+1=0$ và $2x-3y+z+1=0$ có phương trình là
$x+y+z-2=0$ | |
$2x+y+z-1=0$ | |
$x+y+z+2=0$ | |
$x-y+z-6=0$ |
Trong không gian $Oxyz$, cho hai điểm $A(5;0;4)$ và $B(3;4;2)$. Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng $AB$?
$4x+2y+3z-11=0$ | |
$x-2y+z-11=0$ | |
$4x+2y+3z-3=0$ | |
$x-2y+z-3=0$ |
Trong không gian $Oxyz$, cho điểm $P(3;1;3)$ và đường thẳng $d\colon\dfrac{x-3}{1}=\dfrac{y+4}{3}=\dfrac{z-2}{3}$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm $P$ và vuông góc với đường thẳng $d$?
$x-4y+3z+3=0$ | |
$x+3y+3z-3=0$ | |
$3x+y+3z-15=0$ | |
$x+3y+3z-15=0$ |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;-2;3\right)\) và đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-1}\). Mặt phẳng đi qua \(M\) và vuông góc với \(d\) có phương trình là
\(3x+2y-z+1=0\) | |
\(2x-2y+3z-17=0\) | |
\(3x+2y-z-1=0\) | |
\(2x-2y+3z+17=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian \(Oxyz\), cho hai điểm \(A\left(1;5;-2\right)\), \(B\left(3;1;2\right)\). Viết phương trình mặt phẳng trung trực của đoạn thẳng \(AB\).
\(2x+3y+4=0\) | |
\(x-2y+2z-8=0\) | |
\(x-2y+2z+8=0\) | |
\(x-2y+2z+4=0\) |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;1;0\right)\) và đường thẳng \(\Delta\colon\dfrac{x-3}{1}=\dfrac{y-1}{4}=\dfrac{z+1}{-2}\). Mặt phẳng đi qua \(M\) và vuông góc với \(\Delta\) có phương trình là
\(3x+y-z-7=0\) | |
\(x+4y-2z+6=0\) | |
\(x+4y-2z-6=0\) | |
\(3x+y-z+7=0\) |
Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?
\(2x+y-1=0\) | |
\(y+2z+3=0\) | |
\(2x-y-7=0\) | |
\(x+2y-z+4=0\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A(2;1;-1)\), \(B(-1;0;4)\) và \(C(0;-2;-1)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm \(A\) và vuông góc với đường thẳng \(BC\)?
\(x-2y-5z-5=0\) | |
\(x-2y-5z+5=0\) | |
\(x-2y-5z-2=0\) | |
\(2x+y-z-5=0\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Trong không gian \(Oxyz\), cho hai điểm \(A\left(-1;2;2\right)\) và \(B\left(3;0;-1\right)\). Gọi \(\left(P\right)\) là mặt phẳng đi qua điểm \(B\) và vuông góc với đường thẳng \(AB\). Mặt phẳng \(\left(P\right)\) có phương trình là
\(4x-2y-3z-9=0\) | |
\(4x+2y-3z-15=0\) | |
\(4x-2y+3z-9=0\) | |
\(4x-2y-3z-15=0\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |