Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
\(a+b=0\) | |
\(a-b=0\) | |
\(a+2b=0\) | |
\(2a-b=0\) |
Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng
\(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\) | |
\(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\) | |
\(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\) | |
\(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
\(-5\) | |
\(7\) | |
\(12\) | |
\(6\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
\(a+b+1=0\) | |
\(a+3b+1=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2+3x+2}=a\ln2+b\ln3\) với \(a\), \(b\) là các số nguyên. Mệnh đề nào sau đây đúng?
\(a+2b=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).
\(1\) | |
\(0\) | |
\(-1\) | |
\(3\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
\(25\) | |
\(41\) | |
\(20\) | |
\(34\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
\(0\) | |
\(2\) | |
\(3\) | |
\(1\) |
Cho biết \(\displaystyle\int\limits_0^2\dfrac{x-1}{x^2+4x+3}\mathrm{\,d}x=a\ln5+b\ln3\), với \(a,\,b\in\mathbb{Q}\). Biểu thức \(T=a^2+b^2\) bằng
\(13\) | |
\(10\) | |
\(25\) | |
\(5\) |
Cho \(\displaystyle\int\limits_2^3\dfrac{x+2}{2x^2-3x+1}\mathrm{\,d}x=a\ln5+b\ln3+3\ln2\) (\(a,\,b\in\mathbb{Q}\)). Tính \(P=2a-b\).
\(P=1\) | |
\(P=7\) | |
\(P=-\dfrac{15}{2}\) | |
\(P=\dfrac{15}{2}\) |
Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
\(S=6\) | |
\(S=2\) | |
\(S=-2\) | |
\(S=0\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x+1}{\left(x+2\right)^2}\mathrm{\,d}x=\ln\dfrac{a}{b}-\dfrac{c}{d}\) với \(a,\,b,\,c,\,d\) là các số nguyên dương và \(\dfrac{a}{b},\,\dfrac{c}{d}\) là các phân số tối giản. Tính \(T=a+b+c+d\).
\(T=13\) | |
\(T=10\) | |
\(T=12\) | |
\(T=11\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{2x+3}{2-x}\mathrm{\,d}x =a\cdot\ln2+b\) (với \(a,\,b\) là các số nguyên). Khi đó giá trị của \(a\) là
\(-7\) | |
\(7\) | |
\(5\) | |
\(-5\) |
Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng
\(3\) | |
\(4\) | |
\(5\) | |
\(6\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
\(S=2\) | |
\(S=-2\) | |
\(S=5\) | |
\(S=10\) |
Cho \(\displaystyle\int\limits_{1}^{2}\dfrac{2}{x^2+2x}\mathrm{\, d}x=a\ln2+b\ln3\) với \(a,\,b\) là các số hữu tỉ. Giá trị của \(2a+3b\) bằng
\(5\) | |
\(1\) | |
\(-1\) | |
\(-5\) |
Biết \(I=\displaystyle\int\limits_0^1\dfrac{x^2+2}{(x+2)^2}\mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
\(S=1\) | |
\(S=2\) | |
\(S=-1\) | |
\(S=0\) |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
$a+2b=0$ | |
$2a-b=0$ | |
$a-b=0$ | |
$a+b=0$ |
Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng
$7$ | |
$2$ | |
$3$ | |
$1$ |