Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
![]() | \(150^\circ\) |
![]() | \(90^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
![]() | \(\left|\vec{a}\right|=\left|\vec{b}\right|\) |
![]() | \(\vec{a},\,\vec{b}\) cùng phương |
![]() | \(\vec{a}\bot\vec{b}\) |
![]() | \(\vec{a}\cdot\vec{b}=0\) |
Trong mặt phẳng \(Oxy\), cho vectơ \(\vec{a}=(3;-4)\). Đẳng thức nào sau đây đúng?
![]() | \(\left|\vec{a}\right|=5\) |
![]() | \(\left|\vec{a}\right|=3\) |
![]() | \(\left|\vec{a}\right|=4\) |
![]() | \(\left|\vec{a}\right|=7\) |
Góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(1;7)\) có số đo bằng
![]() | \(135^\circ\) |
![]() | \(54^\circ\) |
![]() | \(45^\circ\) |
![]() | \(90^\circ\) |
Cho vectơ \(\vec{a}=(1;-2)\). Với giá trị nào của \(y\) thì vectơ \(\vec{b}=(-3;y)\) vuông góc với \(\vec{a}\)?
![]() | \(-6\) |
![]() | \(6\) |
![]() | \(-\dfrac{3}{2}\) |
![]() | \(3\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
![]() | \(\cos A=\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=\dfrac{1}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
![]() | \(\dfrac{\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\sqrt{2}}{2}\) |
![]() | \(-135^\circ\) |
![]() | \(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
![]() | \(135^\circ\) |
![]() | \(45^\circ\) |
![]() | \(30^\circ\) |
![]() | \(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(1;-3)\) và \(\vec{b}=(2;5)\). Tính \(\vec{a}\left(\vec{a}+2\vec{b}\right)\).
![]() | \(26\) |
![]() | \(-16\) |
![]() | \(16\) |
![]() | \(36\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).
![]() | \(60^\circ\) |
![]() | \(45^\circ\) |
![]() | \(135^\circ\) |
![]() | \(120^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{u}=\vec{i}+3\vec{j}\) và \(\vec{v}=(2;-1)\). Tính \(\vec{u}\cdot\vec{v}\).
![]() | \(\vec{u}\cdot\vec{v}=-1\) |
![]() | \(\vec{u}\cdot\vec{v}=1\) |
![]() | \(\vec{u}\cdot\vec{v}=(2;-3)\) |
![]() | \(\vec{u}\cdot\vec{v}=5\sqrt{2}\) |
Trong mặt phẳng \(Oxy\), tích vô hướng của hai vectơ \(\vec{a}=(4;-3)\) và \(\vec{b}=(-3;4)\) bằng
![]() | \(25\) |
![]() | \(24\) |
![]() | \(-24\) |
![]() | \(7\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;3)\) và \(\vec{b}=(4;-1)\). Tích \(\vec{a}\cdot\vec{b}\) bằng
![]() | \(11\) |
![]() | \(5\) |
![]() | \(4\) |
![]() | \(-2\) |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
![]() | $3$ |
![]() | $6$ |
![]() | $2$ |
![]() | $3\sqrt{3}$ |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
![]() | \(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) |
![]() | \(\overrightarrow{u}=\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\bot\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(2;3;4)\) và \(B(3;0;1)\). Khi đó độ dài vectơ \(\overrightarrow{AB}\) là
![]() | \(\sqrt{19}\) |
![]() | \(19\) |
![]() | \(\sqrt{13}\) |
![]() | \(13\) |
Trong không gian \(Oxyz\), cho vectơ \(\vec{a}=(2;-2;-4)\), \(\vec{b}=(1;-1;1)\). Mệnh đề nào dưới đây sai?
![]() | \(\vec{a}+\vec{b}=(3;-3;-3)\) |
![]() | \(\vec{a}\) và \(\vec{b}\) cùng phương |
![]() | \(\left|\vec{b}\right|=\sqrt{3}\) |
![]() | \(\vec{a}\bot\vec{b}\) |
Cho vectơ \(\vec{a}\). Khi đó \(\vec{a}^2\) bằng
![]() | \(\left|\vec{a}\right|^2\) |
![]() | \(a^2\) |
![]() | \(\overrightarrow{a^2}\) |
![]() | \(\left|a\right|^2\) |
Cho hai vectơ \(\vec{a}\) và \(\vec{b}\). Đẳng thức nào sau đây đúng?
![]() | \(\sqrt{\left(\vec{a}\right)^2}=\vec{a}\) |
![]() | \(\vec{a}=\pm\left|\vec{a}\right|\) |
![]() | \(\sqrt{\left(\vec{a}\right)^2}=\left|\vec{a}\right|\) |
![]() | \(\left|\vec{a}\cdot\vec{b}\right|=\left|\vec{a}\right|\cdot\left|\vec{b}\right|\) |