Vectơ nào sau đây không phải vectơ pháp tuyến của đường thẳng \(\Delta\colon x-3y-2=0\)?
![]() | \(\vec{b}=(1;-3)\) |
![]() | \(\vec{d}=(-2;6)\) |
![]() | \(\vec{c}=\left(\dfrac{1}{3};-1\right)\) |
![]() | \(\vec{a}=(3;1)\) |
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng \(d\colon-3x+y+2019=0\)?
![]() | \(\vec{a}=(-3;0)\) |
![]() | \(\vec{b}=(-3;-1)\) |
![]() | \(\vec{c}=(6;2)\) |
![]() | \(\vec{d}=(6;-2)\) |
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng \(d\colon x-2y+2019=0\)?
![]() | \(\vec{v}=(0;-2)\) |
![]() | \(\vec{n}=(1;-2)\) |
![]() | \(\vec{m}=(-2;0)\) |
![]() | \(\vec{u}=(2;1)\) |
Cho đường thẳng \(d\colon3x+5y+2019=0\). Tìm mệnh đề sai trong các mệnh đề sau:
![]() | \(d\) có vectơ pháp tuyến \(\vec{n}=(3;5)\) |
![]() | \(d\) có vectơ chỉ phương \(\vec{u}=(5;-3)\) |
![]() | \(d\) có hệ số góc \(k=\dfrac{5}{3}\) |
![]() | \(d\) song song với đường thẳng \(\Delta\colon3x+5y=0\) |
Đường thẳng \(d\) đi qua điểm \(A(1;-2)\) và có vectơ pháp tuyến \(\vec{n}=(-2;4)\) có phương trình tổng quát là
![]() | \(x+2y+4=0\) |
![]() | \(x-2y-5=0\) |
![]() | \(-2x+4y=0\) |
![]() | \(x-2y+4=0\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(A(-3;2)\) và \(B(-3;3)\). Đường trung trực của đoạn thẳng \(AB\) có một vectơ pháp tuyến là
![]() | \(\vec{a}=(6;5)\) |
![]() | \(\vec{b}=(0;1)\) |
![]() | \(\vec{c}=(-3;5)\) |
![]() | \(\vec{d}=(-1;0)\) |
Vectơ nào sau đây là một vectơ chỉ phương của đường thẳng \(d\colon2x-3y+2019=0\)?
![]() | \(\vec{a}=(-3;-2)\) |
![]() | \(\vec{m}=(2;3)\) |
![]() | \(\vec{u}=(-3;2)\) |
![]() | \(\vec{z}=(2;-3)\) |
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng \(d\colon\begin{cases}x=-1+2t\\ y=3-t\end{cases}\)?
![]() | \(\vec{b}=(2;-1)\) |
![]() | \(\vec{d}=(-1;2)\) |
![]() | \(\vec{c}=(1;-2)\) |
![]() | \(\vec{a}=(1;2)\) |
Mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
![]() | \(1\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | Vô số |
Đường thẳng \(d\) có một vectơ pháp tuyến là \(\vec{n}=(-2;-5)\). Đường thẳng \(\Delta\) song song với \(d\) có một vectơ chỉ phương là
![]() | \(\vec{a}=(5;-2)\) |
![]() | \(\vec{n}=(-5;-2)\) |
![]() | \(\vec{v}=(2;5)\) |
![]() | \(\vec{m}=(2;-5)\) |
Đường thẳng \(d\) có một vectơ chỉ phương là \(\vec{u}=(3;-4)\). Đường thẳng \(\Delta\) song song với \(d\) có một vectơ pháp tuyến là
![]() | \(\vec{a}=(4;3)\) |
![]() | \(\vec{n}=(-4;3)\) |
![]() | \(\vec{v}=(3;4)\) |
![]() | \(\vec{m}=(3;-4)\) |
Đường thẳng \(d\) có một vectơ pháp tuyến là \(\vec{n}=(-2;-5)\). Đường thẳng \(\Delta\) vuông góc với \(d\) có một vectơ chỉ phương là
![]() | \(\vec{a}=(5;-2)\) |
![]() | \(\vec{n}=(-5;2)\) |
![]() | \(\vec{v}=(2;5)\) |
![]() | \(\vec{m}=(2;-5)\) |
Đường thẳng \(d\) có một vectơ chỉ phương là \(\vec{u}=(3;-4)\). Đường thẳng \(\Delta\) vuông góc với \(d\) có một vectơ pháp tuyến là
![]() | \(\vec{a}=(4;3)\) |
![]() | \(\vec{n}=(-4;-3)\) |
![]() | \(\vec{v}=(3;4)\) |
![]() | \(\vec{m}=(3;-4)\) |
Đường thẳng \(d\) có một vectơ pháp tuyến \(\vec{n}=(4;-2)\) thì nhận vectơ nào sau đây làm vectơ chỉ phương?
![]() | \(\vec{a}=(2;-4)\) |
![]() | \(\vec{c}=(-2;4)\) |
![]() | \(\vec{d}=(1;2)\) |
![]() | \(\vec{b}=(2;1)\) |
Đường thẳng \(d\) có một vectơ chỉ phương là \(\vec{u}=(2;-1)\). Vectơ nào sau đây là vectơ pháp tuyến của \(d\)?
![]() | \(\vec{a}=(-1;2)\) |
![]() | \(\vec{b}=(1;-2)\) |
![]() | \(\vec{c}=(-3;6)\) |
![]() | \(\vec{d}=(3;6)\) |
Đường thẳng đi qua hai điểm \(A(2;3)\) và \(B(4;1)\) có vectơ pháp tuyến là
![]() | \(\vec{m}=(2;-2)\) |
![]() | \(\vec{n}=(2;-1)\) |
![]() | \(\vec{u}=(1;1)\) |
![]() | \(\vec{v}=(1;-2)\) |
Đường thẳng song song với trục \(Ox\) có vectơ pháp tuyến là
![]() | \(\vec{a}=(0;1)\) |
![]() | \(\vec{b}=(1;0)\) |
![]() | \(\vec{c}=(-1;0)\) |
![]() | \(\vec{d}=(1;1)\) |
Đường thẳng \(\Delta\) đi qua điểm \(S\left(5;1\right)\) và nhận vectơ \(\overrightarrow{u}=\left(2;-3\right)\) làm vectơ pháp tuyến. \(\Delta\) có phương trình tổng quát là
![]() | \(5x+y-7=0\) |
![]() | \(\begin{cases}x=5+2t\\ y=1-3t\end{cases}\) |
![]() | \(\dfrac{x-5}{2}=\dfrac{y-1}{-3}\) |
![]() | \(2x-3y-7=0\) |
Đường thẳng \(\Delta\) có hệ số góc \(k=2019\). Tìm một vectơ pháp tuyến của \(\Delta\).
![]() | \(\overrightarrow{a}=\left(1;2019\right)\) |
![]() | \(\overrightarrow{b}=\left(1;-2019\right)\) |
![]() | \(\overrightarrow{u}=\left(2019;1\right)\) |
![]() | \(\overrightarrow{v}=\left(2019;-1\right)\) |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon2x-3y-1=0$ và $d'\colon2x-3y+5=0$. Phép tịnh tiến theo vectơ nào sau đây không thể biến $d$ thành $d'$?
![]() | $\overrightarrow{u}=(0;2)$ |
![]() | $\overrightarrow{u}=(-3;0)$ |
![]() | $\overrightarrow{u}=(3;4)$ |
![]() | $\overrightarrow{u}=(-1;1)$ |