Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon x^2+y^2-5y=0\) là
![]() | \(I(0;5),\,R=5\) |
![]() | \(I(0;-5),\,R=5\) |
![]() | \(I\left(0;\dfrac{5}{2}\right),\,R=\dfrac{5}{2}\) |
![]() | \(I\left(0;-\dfrac{5}{2}\right),\,R=\dfrac{5}{2}\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon x^2+y^2-10x-11=0\) là
![]() | \(I(-10;0),\,R=\sqrt{111}\) |
![]() | \(I(-10;0),\,R=2\sqrt{89}\) |
![]() | \(I(-5;0),\,R=6\) |
![]() | \(I(5;0),\,R=6\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon16x^2+16y^2+16x-8y-11=0\) là
![]() | \(I(-8;4),\,R=\sqrt{91}\) |
![]() | \(I(8;-4),\,R=\sqrt{91}\) |
![]() | \(I(-8;4),\,R=\sqrt{69}\) |
![]() | \(I\left(-\dfrac{1}{2};\dfrac{1}{4}\right),\,R=1\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon2x^2+2y^2-8x+4y-1=0\) là
![]() | \(I(-2;1),\,R=\dfrac{\sqrt{21}}{2}\) |
![]() | \(I(2;-1),\,R=\dfrac{\sqrt{22}}{2}\) |
![]() | \(I(4;-2),\,R=\sqrt{21}\) |
![]() | \(I(-4;2),\,R=\sqrt{19}\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon x^2+y^2-4x+2y-3=0\) là
![]() | \(I(2;-1),\,R=2\sqrt{2}\) |
![]() | \(I(-2;1),\,R=2\sqrt{2}\) |
![]() | \(I(2;-1),\,R=8\) |
![]() | \(I(-2;1),\,R=8\) |
Đường tròn \((\mathscr{C})\colon x^2+y^2-4x+6y-12=0\) có tâm \(I\) và bán kính \(R\) lần lượt là
![]() | \(I(2;-3),\,R=5\) |
![]() | \(I(-2;3),\,R=5\) |
![]() | \(I(-4;6),\,R=5\) |
![]() | \(I(-2;3),\,R=1\) |
Đường tròn \((\mathscr{C})\colon x^2+y^2-6x+2y+6=0\) có tâm \(I\) và bán kính \(R\) lần lượt là
![]() | \(I(3;-1),\,R=4\) |
![]() | \(I(-3;1),\,R=4\) |
![]() | \(I(3;-1),\,R=2\) |
![]() | \(I(-3;1),\,R=2\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon x^2+y^2=9\) là
![]() | \(I(0;0),\,R=9\) |
![]() | \(I(0;0),\,R=81\) |
![]() | \(I(1;1),\,R=3\) |
![]() | \(I(0;0),\,R=3\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon(x+1)^2+y^2=8\) là
![]() | \(I(-1;0),\,R=8\) |
![]() | \(I(-1;0),\,R=64\) |
![]() | \(I(-1;0),\,R=2\sqrt{2}\) |
![]() | \(I(1;0),\,R=2\sqrt{2}\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon x^2+(y+4)^2=5\) là
![]() | \(I(0;-4),\,R=\sqrt{5}\) |
![]() | \(I(0;-4),\,R=5\) |
![]() | \(I(0;4),\,R=\sqrt{5}\) |
![]() | \(I(0;4),\,R=5\) |
Tọa độ tâm \(I\) và bán kính \(R\) của đường tròn \((\mathscr{C})\colon(x-1)^2+(y+3)^2=16\) là
![]() | \(I(-1;3),\,R=4\) |
![]() | \(I(1;-3),\,R=4\) |
![]() | \(I(1;-3),\,R=16\) |
![]() | \(I(-1;3),\,R=16\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(-1;2\right)\), \(B\left(-2;3\right)\) và có tâm \(I\) thuộc đường thẳng \(\Delta\colon3x-y+10=0\). Phương trình của đường tròn \(\left(\mathscr{C}\right)\) là
![]() | \(\left(x+3\right)^2+\left(y-1\right)^2=\sqrt{5}\) |
![]() | \(\left(x-3\right)^2+\left(y+1\right)^2=\sqrt{5}\) |
![]() | \(\left(x-3\right)^2+\left(y+1\right)^2=5\) |
![]() | \(\left(x+3\right)^2+\left(y-1\right)^2=5\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(1;1\right)\), \(B\left(3;5\right)\) và có tâm \(I\) thuộc trục tung có phương trình là
![]() | \(x^2+y^2-8y+6=0\) |
![]() | \(x^2+\left(y-4\right)^2=6\) |
![]() | \(x^2+\left(y+4\right)^2=6\) |
![]() | \(x^2+y^2+4y+6=0\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(1;1\right)\), \(B\left(5;3\right)\) và có tâm \(I\) thuộc trục hoành có phương trình là
![]() | \(\left(x+4\right)^2+y^2=10\) |
![]() | \(\left(x-4\right)^2+y^2=10\) |
![]() | \(\left(x-4\right)^2+y^2=\sqrt{10}\) |
![]() | \(\left(x+4\right)^2+y^2=\sqrt{10}\) |
Cho phương trình \(x^2+y^2-2\left(m+1\right)x+4y-1=0\) (1). Với giá trị nào của \(m\) để (1) là phương trình đường tròn có bán kính nhỏ nhất?
![]() | \(m=2\) |
![]() | \(m=-1\) |
![]() | \(m=1\) |
![]() | \(m=-2\) |
Tìm tọa độ tâm \(I\) của đường tròn đi qua ba điểm \(A\left(0;4\right)\), \(B\left(2;4\right)\), \(C\left(4;0\right)\).
![]() | \(I\left(0;0\right)\) |
![]() | \(I\left(1;0\right)\) |
![]() | \(I\left(3;2\right)\) |
![]() | \(I\left(1;1\right)\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;-3\right)\) và tiếp xúc với trục \(Oy\) có phương trình là
![]() | \(\left(x+2\right)^2+\left(y-3\right)^2=4\) |
![]() | \(\left(x+2\right)^2+\left(y-3\right)^2=9\) |
![]() | \(\left(x-2\right)^2+\left(y+3\right)^2=4\) |
![]() | \(\left(x-2\right)^2+\left(y+3\right)^2=9\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;3\right)\) và tiếp xúc với trục \(Ox\) có phương trình là
![]() | \(\left(x-2\right)^2+\left(y-3\right)^2=9\) |
![]() | \(\left(x-2\right)^2+\left(y-3\right)^2=4\) |
![]() | \(\left(x-2\right)^2+\left(y-3\right)^2=3\) |
![]() | \(\left(x+2\right)^2+\left(y+3\right)^2=9\) |
Cho đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+5x+7y-3=0\). Tính khoảng cách từ tâm của \(\left(\mathscr{C}\right)\) đến trục \(Ox\).
![]() | \(5\) |
![]() | \(7\) |
![]() | \(\dfrac{7}{2}\) |
![]() | \(\dfrac{5}{2}\) |
Tâm của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2-10x+1=0\) cách trục \(Oy\) một khoảng bằng
![]() | \(-5\) |
![]() | \(0\) |
![]() | \(10\) |
![]() | \(5\) |