Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Biết rằng tích phân \(\displaystyle\int\limits_{0}^{1}(2x+1)\mathrm{e}^x\mathrm{\,d}x=a+b\mathrm{e}\) với \(a,\,b\in\mathbb{Z}\). Tích \(ab\) bằng
\(1\) | |
\(-1\) | |
\(-15\) | |
\(20\) |
Biết \(\displaystyle\int\limits_{\ln2}^{\ln5}(x+1)\mathrm{e}^x \mathrm{\,d}x=a\ln5+b\ln2\), với \(a,\,b\) là các số nguyên. Tính \(T=3a-2b\).
\(T=19\) | |
\(T=-4\) | |
\(T=11\) | |
\(T=-16\) |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
$a+2b=0$ | |
$2a-b=0$ | |
$a-b=0$ | |
$a+b=0$ |
Cho biết $$\displaystyle\int\dfrac{2x-13}{(x+1)(x-2)}\mathrm{\,d}x=a\ln|x+1|+b\ln|x-2|+C$$Mệnh đề nào sau đây đúng?
\(a-b=8\) | |
\(2a-b=8\) | |
\(a+2b=8\) | |
\(a+b=8\) |
Biết hàm số \(f(x)=\dfrac{a}{b^2\cdot3^x}\) có đồ thị đối xứng với đồ thị hàm số \(y=3^x\) qua đường thẳng \(x=-1\). Biết \(a,\,b\) là các số nguyên.
Chọn khẳng định đúng trong các khẳng định sau:
\(b^2=9a\) | |
\(b^2=4a\) | |
\(b^2=6a\) | |
\(b^2=a\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
\(a+b=0\) | |
\(a-b=0\) | |
\(a+2b=0\) | |
\(2a-b=0\) |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
\(2\) | |
\(-2\) | |
\(-4\) | |
\(3\) |
Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng
\(-\dfrac{3}{2}\) | |
\(3\) | |
\(1\) | |
\(\dfrac{3}{2}\) |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
\(0\) | |
\(3\) | |
\(1\) | |
\(2\) |
Nếu các số hữu tỉ \(a\), \(b\) thỏa mãn \(\displaystyle\int\limits_0^1 \left(a\mathrm{e}^x+b\right)\mathrm{\,d}x=\mathrm{e}+2\) thì giá trị của biểu thức \(a+b\) bằng
\(4\) | |
\(5\) | |
\(6\) | |
\(3\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).
\(T=7\) | |
\(T=10\) | |
\(T=6\) | |
\(T=8\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
\(25\) | |
\(41\) | |
\(20\) | |
\(34\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
\(-5\) | |
\(7\) | |
\(12\) | |
\(6\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
\(a+b+1=0\) | |
\(a+3b+1=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) |
Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng
\(3\) | |
\(4\) | |
\(5\) | |
\(6\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
\(S=2\) | |
\(S=-2\) | |
\(S=5\) | |
\(S=10\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2+3x+2}=a\ln2+b\ln3\) với \(a\), \(b\) là các số nguyên. Mệnh đề nào sau đây đúng?
\(a+2b=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |