Ngân hàng bài tập

Bài tập tương tự

A

Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng

$12$
$16$
$6$
$10$
2 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết rằng tích phân \(\displaystyle\int\limits_{0}^{1}(2x+1)\mathrm{e}^x\mathrm{\,d}x=a+b\mathrm{e}\) với \(a,\,b\in\mathbb{Z}\). Tích \(ab\) bằng

\(1\)
\(-1\)
\(-15\)
\(20\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{\ln2}^{\ln5}(x+1)\mathrm{e}^x \mathrm{\,d}x=a\ln5+b\ln2\), với \(a,\,b\) là các số nguyên. Tính \(T=3a-2b\).

\(T=19\)
\(T=-4\)
\(T=11\)
\(T=-16\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?

$a+2b=0$
$2a-b=0$
$a-b=0$
$a+b=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho biết $$\displaystyle\int\dfrac{2x-13}{(x+1)(x-2)}\mathrm{\,d}x=a\ln|x+1|+b\ln|x-2|+C$$Mệnh đề nào sau đây đúng?

\(a-b=8\)
\(2a-b=8\)
\(a+2b=8\)
\(a+b=8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết hàm số \(f(x)=\dfrac{a}{b^2\cdot3^x}\) có đồ thị đối xứng với đồ thị hàm số \(y=3^x\) qua đường thẳng \(x=-1\). Biết \(a,\,b\) là các số nguyên.

Chọn khẳng định đúng trong các khẳng định sau:

\(b^2=9a\)
\(b^2=4a\)
\(b^2=6a\)
\(b^2=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?

\(a+b=0\)
\(a-b=0\)
\(a+2b=0\)
\(2a-b=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là

\(2\)
\(-2\)
\(-4\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng

\(-\dfrac{3}{2}\)
\(3\)
\(1\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).

\(0\)
\(3\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Nếu các số hữu tỉ \(a\), \(b\) thỏa mãn \(\displaystyle\int\limits_0^1 \left(a\mathrm{e}^x+b\right)\mathrm{\,d}x=\mathrm{e}+2\) thì giá trị của biểu thức \(a+b\) bằng

\(4\)
\(5\)
\(6\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).

\(T=7\)
\(T=10\)
\(T=6\)
\(T=8\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng

\(25\)
\(41\)
\(20\)
\(34\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).

\(-5\)
\(7\)
\(12\)
\(6\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?

\(a+b+1=0\)
\(a+3b+1=0\)
\(a-2b=0\)
\(a+b=-2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng

\(3\)
\(4\)
\(5\)
\(6\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).

\(S=2\)
\(S=-2\)
\(S=5\)
\(S=10\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho \(\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2+3x+2}=a\ln2+b\ln3\) với \(a\), \(b\) là các số nguyên. Mệnh đề nào sau đây đúng?

\(a+2b=0\)
\(a-2b=0\)
\(a+b=-2\)
\(a+b=2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$

$21$
$10$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?

$12$
$11$
$6$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự