Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(-4\) |
![]() | \(3\) |
Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).
![]() | \(1\) |
![]() | \(0\) |
![]() | \(-1\) |
![]() | \(3\) |
Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng
![]() | \(\dfrac{3}{2}\) |
![]() | \(\dfrac{1}{2}\) |
![]() | \(1\) |
![]() | \(2\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
![]() | \(S=3\) |
![]() | \(S=6\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x=\dfrac{1}{a}+b\ln\dfrac{3}{2}\) với \(a,\,b>0\). Tính giá trị của \(S=a+2b\).
![]() | \(S=5\) |
![]() | \(S=6\) |
![]() | \(S=9\) |
![]() | \(S=3\) |
Biết \(\displaystyle\int\limits_{\tfrac{1}{3}}^1\dfrac{x-5}{2x+2}\mathrm{\,d}x=a+\ln b\) với \(a,\,b\in\mathbb{R}\). Mệnh đề nào dưới đây đúng?
![]() | \(ab=\dfrac{8}{81}\) |
![]() | \(a+b=\dfrac{7}{24}\) |
![]() | \(ab=\dfrac{9}{8}\) |
![]() | \(a+b=\dfrac{3}{10}\) |
Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là
![]() | $10$ |
![]() | $7$ |
![]() | $6$ |
![]() | $8$ |
Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.
![]() | $P=32$ |
![]() | $P=130$ |
![]() | $P=2$ |
![]() | $P=16$ |
Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
![]() | \(5\) |
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
![]() | \(a+b=0\) |
![]() | \(a-b=0\) |
![]() | \(a+2b=0\) |
![]() | \(2a-b=0\) |
Cho \(M\), \(N\) là các số thực, xét hàm số \(f(x)=M\sin\pi x+N\cos\pi x\) thỏa mãn \(f(1)=3\) và \(\displaystyle\int\limits_0^{\tfrac{1}{2}}f(x)\mathrm{\,d}x=-\dfrac{1}{\pi}\). Giá trị của \(f'\left(\dfrac{1}{4}\right)\) bằng
![]() | \(\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\pi\sqrt{2}}{2}\) |
![]() | \(\dfrac{\pi\sqrt{2}}{2}\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
![]() | \(25\) |
![]() | \(41\) |
![]() | \(20\) |
![]() | \(34\) |
Cho biết \(\displaystyle\int\limits_0^2\dfrac{x-1}{x^2+4x+3}\mathrm{\,d}x=a\ln5+b\ln3\), với \(a,\,b\in\mathbb{Q}\). Biểu thức \(T=a^2+b^2\) bằng
![]() | \(13\) |
![]() | \(10\) |
![]() | \(25\) |
![]() | \(5\) |
Cho \(a,\,b\) là các số thực thỏa mãn \(\displaystyle\int\limits_0^1\dfrac{2abx+a+b}{(1+ax)(1+bx)}\mathrm{\,d}x=0\). Giá trị của \(S=ab+a+b\) bằng
![]() | \(\left[\begin{array}{l}S=0\\ S=1\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}S=-2\\ S=0\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}S=1\\ S=-2\end{array}\right.\) |
![]() | \(\left[\begin{array}{l}S=-2\\ S=1\end{array}\right.\) |
Cho \(\displaystyle\int\limits_2^3\dfrac{x+2}{2x^2-3x+1}\mathrm{\,d}x=a\ln5+b\ln3+3\ln2\) (\(a,\,b\in\mathbb{Q}\)). Tính \(P=2a-b\).
![]() | \(P=1\) |
![]() | \(P=7\) |
![]() | \(P=-\dfrac{15}{2}\) |
![]() | \(P=\dfrac{15}{2}\) |
Cho \(\displaystyle\int\limits_1^2\left(x^2+\dfrac{x}{x+1}\right)\mathrm{\,d}x=\dfrac{10}{b}+\ln\dfrac{a}{b}\) với \(a,\,b\in\mathbb{Q}\). Tính \(P=a+b\).
![]() | \(P=1\) |
![]() | \(P=5\) |
![]() | \(P=7\) |
![]() | \(P=2\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
![]() | \(-5\) |
![]() | \(7\) |
![]() | \(12\) |
![]() | \(6\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
![]() | \(a+b+1=0\) |
![]() | \(a+3b+1=0\) |
![]() | \(a-2b=0\) |
![]() | \(a+b=-2\) |
Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng
![]() | \(3\) |
![]() | \(4\) |
![]() | \(5\) |
![]() | \(6\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
![]() | \(S=2\) |
![]() | \(S=-2\) |
![]() | \(S=5\) |
![]() | \(S=10\) |