Ngân hàng bài tập

Bài tập tương tự

S

Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).

\(S=3\)
\(S=4\)
\(S=0\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=\sin x+2\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\cos x\cdot f(x)\mathrm{\,d}x$. Giá trị $f\left(-\dfrac{\pi}{2}\right)$ bằng

$-\pi$
$-1$
$-2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng

$\dfrac{23}{3}$
$\dfrac{23}{6}$
$\dfrac{17}{6}$
$\dfrac{17}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f(2)=16\), \(\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=4\). Tính \(I=\displaystyle\int\limits_{0}^{1}xf'(2x)\mathrm{\,d}x\).

\(I=13\)
\(I=20\)
\(I=12\)
\(I=7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).

\(I=3+2\ln^22\)
\(I=\ln^2\)
\(I=2\ln2\)
\(I=2\ln^22\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\displaystyle\int\limits_{-1}^5f(x)\mathrm{\,d}x=9\). Tính \(I=\displaystyle\int\limits_0^2f(3x-1)\mathrm{\,d}x\).

\(I=26\)
\(I=9\)
\(I=3\)
\(I=27\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_1^3 \dfrac{\left(x+6\right)^{2017}}{x^{2019}}\mathrm{\,d}x=\dfrac{a^{2018}-3^{2018}}{6\cdot 2018}\). Tính \(a\).

\(7\)
\(9\)
\(6\)
\(8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).

\(1\)
\(0\)
\(-1\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng

\(\dfrac{3}{2}\)
\(\dfrac{1}{2}\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là

\(2\)
\(-2\)
\(-4\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{4}}\tan^2x\mathrm{\,d}x=a-\dfrac{b\pi}{c}\) với \(a\), \(b\), \(c\) là các số nguyên dương, \(b\) và \(c\) nguyên tố cùng nhau. Giá trị của biểu thức \(T=\dfrac{a}{b}+2c\) là

\(7\)
\(5\)
\(9\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm chu kì $T_{0}$ của hàm số $f(x)=\tan2x$.

$T_{0}=\pi$
$T_{0}=\dfrac{\pi}{4}$
$T_{0}=2\pi$
$T_{0}=\dfrac{\pi}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm điều kiện xác định của hàm số $y=\tan2x$.

$x\neq\dfrac{\pi}{8}+k\dfrac{\pi}{2}$, $k\in\mathbb{Z}$
$x\neq\dfrac{\pi}{4}+k\pi$, $k\in\mathbb{Z}$
$x\neq\dfrac{\pi}{2}+k\pi$, $k\in\mathbb{Z}$
$x\neq\dfrac{\pi}{4}+k\dfrac{\pi}{2}$, $k\in\mathbb{Z}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng

$\dfrac{1073}{15}$
$\dfrac{458}{15}$
$\dfrac{838}{15}$
$\dfrac{1016}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Xét tích phân $I=\displaystyle\displaystyle\int\limits_1^{\rm{e}^2}\dfrac{\left(1+2\ln x\right)^2}{x}\mathrm{\,d}x$, nếu đặt $t=1+2\ln{x}$ thì $I$ bằng

$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$
$2\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$
$2\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1} x(1-x)^{2021}\mathrm{d}x$. Mệnh đề nào dưới đây đúng?

$I=\displaystyle\displaystyle\int\limits_{0}^{1}t^{2021}(1-t)\mathrm{d}t$
$I=-\displaystyle\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$
$I=-\displaystyle\int\limits_{0}^{1} t^{2021}(1-t)\mathrm{d}t$
$I=-\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, thỏa mãn $f(x)+2f(2-x)=x^2-6x+4$. Tích phân $\displaystyle\displaystyle\int\limits_{-1}^3x f^{\prime}(x)\mathrm{d}x$ bằng

$20$
$\dfrac{149}{3}$
$\dfrac{167}{3}$
$\dfrac{176}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.

$\dfrac{7\pi}{6}+1$
$\dfrac{9\pi}{8}+1$
$\dfrac{7\pi}{6}+2$
$\dfrac{9\pi}{8}+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.

$I=20$
$I=8$
$I=18$
$I=16$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\displaystyle\displaystyle\int\limits_{4}^{9}f(x)\mathrm{d}x=10$. Tính tích phân $J=\displaystyle\displaystyle\int\limits_{0}^{1}f(5x+4)\mathrm{d}x$.

$J=2$
$J=10$
$J=50$
$J=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự