Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=x^2+x\) và đường thẳng \(y=-x+3\).
\(S=-\dfrac{32}{3}\) | |
\(S=\dfrac{16}{3}\) | |
\(S=16\) | |
\(S=\dfrac{32}{3}\) |
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol \((P)\colon y=x^2\) và đường thẳng \(d\colon y=x\) xoay quanh trục \(Ox\) bằng
\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x-\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x+\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)^2\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)\mathrm{\,d}x\) |
Diện tích hình phẳng giới hạn bởi hai đường \(y=x^2-4\) và \(y=2x-4\) bằng
\(36\) | |
\(\dfrac{4}{3}\) | |
\(\dfrac{4\pi}{3}\) | |
\(36\pi\) |
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^3-x\) và đồ thị hàm số \(y=x-x^2\).
\(\dfrac{37}{12}\) | |
\(\dfrac{27}{4}\) | |
\(13\) | |
\(\dfrac{9}{4}\) |
Cho hình \(D\) giới hạn bởi các đường \(y=x^2-2\) và \(y=-|x|\). Khi đó diện tích của hình \(D\) là
\(\dfrac{13}{3}\) | |
\(\dfrac{7\pi}{3}\) | |
\(\dfrac{7}{3}\) | |
\(\dfrac{13\pi}{3}\) |
Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).
\(\dfrac{5}{6}\) | |
\(\dfrac{7}{6}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{5}\) |
Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y=x^2\) và \(y=x\) là
\(1\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{1}{2}\) | |
\(\dfrac{1}{6}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=-x^2+4x-3\), \(x=0\), \(x=3\), \(Ox\).
\(-\dfrac{8}{3}\) | |
\(-\dfrac{4}{3}\) | |
\(\dfrac{4}{3}\) | |
\(\dfrac{8}{3}\) |
Diện tích phần hình phẳng được gạch chéo trong hình bên bằng
\(\displaystyle\int\limits_{-1}^{2}{\left(-2x^2+2x+4\right)\mathrm{\,d}x}\) | |
\(\displaystyle\int\limits_{-1}^{2}{\left(2x^2-2x-4\right)\mathrm{\,d}x}\) | |
\(\displaystyle\int\limits_{-1}^{2}{\left(-2x^2-2x+4\right)\mathrm{\,d}x}\) | |
\(\displaystyle\int\limits_{-1}^{2}{\left(2x^2+2x-4\right)\mathrm{\,d}x}\) |
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol \((P)\colon y=x^2\) và đường thẳng \(d\colon y=2x\) quay quanh trục \(Ox\).
\(\pi\displaystyle\int\limits_{0}^{2}\left(x^2-2x\right)^2\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{2}4x^2\mathrm{\,d}x-\pi\displaystyle\int\limits_{0}^{2}x^4\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{2}4x^2\mathrm{\,d}x+\pi\displaystyle\int\limits_{0}^{2}x^4\mathrm{\,d}x\) | |
\(\pi\displaystyle\int\limits_{0}^{2}\left(2x-x^2\right)\mathrm{\,d}x\) |
Tính diện tích hình phẳng giới hạn bởi parabol \(y=-x^2+2x\) và đường thẳng \(y=-3x\).
\(S=\dfrac{125}{2}\) | |
\(S=\dfrac{125}{3}\) | |
\(S=\dfrac{125}{6}\) | |
\(S=\dfrac{125}{8}\) |
Tính diện tích hình phẳng giới hạn bởi parabol \(y=x^2\) và đường thẳng \(y=2x\).
\(S=\dfrac{5}{3}\) | |
\(S=\dfrac{14}{3}\) | |
\(S=\dfrac{20}{3}\) | |
\(S=\dfrac{4}{3}\) |
Gọi tam giác cong \(OAB\) là hình phẳng giới hạn bởi đồ thị các hàm số \(y=2x^2\), \(y=3-x\), \(y=0\) (như hình vẽ).
Tính diện tích \(S\) của tam giác cong \(OAB\).
\(S=\dfrac{8}{3}\) | |
\(S=\dfrac{4}{3}\) | |
\(S=\dfrac{5}{3}\) | |
\(S=\dfrac{10}{3}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=x^2\), \(y=-\dfrac{1}{3}x+\dfrac{4}{3}\) và trục hoành như hình vẽ.
\(\dfrac{7}{3}\) | |
\(\dfrac{56}{3}\) | |
\(\dfrac{39}{2}\) | |
\(\dfrac{11}{6}\) |
Tính diện tích phần hình phẳng gạch chéo (tam giác cong \(OAB\)) trong hình vẽ.
\(\dfrac{5}{6}\) | |
\(\dfrac{5\pi}{6}\) | |
\(\dfrac{8}{15}\) | |
\(\dfrac{8\pi}{15}\) |
Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=x^2-4x$, $Ox$ và $x=0,\,x=2$.
$S=9$ | |
$S=\dfrac{16}{3}$ | |
$S=\dfrac{32}{3}$ | |
$S=\dfrac{5}{3}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$, gọi $S$ là diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, trục hoành và hai đường thẳng $x=a,\,x=b$ $(a< b)$. Mệnh đề nào sau đây đúng?
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$ | |
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$ |
Cho hàm số $f(x)=3x^4+ax^3+bx^2+cx+d$ $(a,\,b,\,c,\,d\in\mathbb{R})$ có ba điểm cực trị là $-2,\,-1$ và $1$. Gọi $y=g(x)$ là hàm số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số $y=f(x)$. Diện tích hình phẳng giới hạn bởi hai đường $y=f(x)$ và $y=g(x)$ bằng
$\dfrac{500}{81}$ | |
$\dfrac{36}{5}$ | |
$\dfrac{2932}{405}$ | |
$\dfrac{2948}{405}$ |
Một khung cửa kính hình parabol với đỉnh $M$ và cạnh đáy $AB$ như minh họa ở hình bên. Biết chi phí để lắp phần kính màu (phần tô đậm trong hình) là $200.000$ đồng/m$^2$ và phần kính trắng còn lại là $150.000$ đồng/m$^2$.
Cho $MN=AB=4$m và $MC=CD=DN$. Hỏi số tiền để lắp kính cho khung cửa như trên gần nhất với số tiền nào dưới đây?
$1.954.000$ đồng | |
$2.123.000$ đồng | |
$1.946.000$ đồng | |
$2.145.000$ đồng |
Cho hai hàm số $f(x)=mx^3+nx^2+px-\dfrac{5}{2}$ $(m,\,n,\,p\in\mathbb{R})$ và $g(x)=x^2+2x-1$ có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là $-3$, $-1$, $1$ (tham khảo hình vẽ bên).
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số $f(x)$ và $g(x)$ bằng
$\dfrac{9}{2}$ | |
$\dfrac{18}{5}$ | |
$4$ | |
$5$ |