Ngân hàng bài tập

Bài tập tương tự

SS

Cho hàm số $y=x^4-4x^2+m$. Tìm $m$ để đồ thị của hàm số cắt trục hoành tại $4$ điểm phân biệt sao cho hình phẳng giới hạn bởi đồ thị với trục hoành có diện tích phần phía trên trục hoành bằng diện tích phần phía dưới trục hoành. Khi đó $m=\dfrac{a}{b}$ với $\dfrac{a}{b}$ là phân số tối giản. Tính $a+2b$.

$37$
$38$
$0$
$29$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho hàm số $f(x)=x^4-5x^2+4$. Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành. Mệnh đề nào sau đây là sai?

$S=2\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\right|$
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\right|+2\left|\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x\right|$
$S=\displaystyle\displaystyle\int\limits_{-2}^{2}\left|f(x)\right|\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tính diện tích \(S\) của hình phẳng \((H)\) giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-2\), hai trục tọa độ và đường thẳng \(x=2\).

\(S=\dfrac{1}{3}\)
\(S=\dfrac{19}{2}\)
\(S=\dfrac{9}{2}\)
\(S=\dfrac{5}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích hình phẳng giới hạn bởi các đường \(y=-x^2+4x-3\), \(x=0\), \(x=3\), \(Ox\).

\(-\dfrac{8}{3}\)
\(-\dfrac{4}{3}\)
\(\dfrac{4}{3}\)
\(\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=\cos{x}+2$, trục hoành và các đường thẳng $x=0$, $x=\dfrac{\pi}{4}$.

$S=\dfrac{\pi}{2}-\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{7}{10}$
$S=\dfrac{\pi}{2}+\dfrac{\sqrt{2}}{2}$
$S=\dfrac{\pi}{4}+\dfrac{\sqrt{2}}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=\mathrm{e}^x$ và các đường thẳng $y=0$, $x=0$, $x=2$ bằng

$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$
$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Đồ thị hàm số \(y=x^4+3x^2-4\) cắt trục hoành tại bao nhiêu điểm?

\(4\)
\(2\)
\(3\)
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đồ thị hàm số \(y=x^4-5x^2+4\) với trục hoành là

\(3\)
\(2\)
\(4\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^3-x\) và đồ thị hàm số \(y=x-x^2\).

\(\dfrac{37}{12}\)
\(\dfrac{27}{4}\)
\(13\)
\(\dfrac{9}{4}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tiếp tuyến của đường cong \(\left(\mathscr{C}\right)\colon y=\dfrac{2x+1}{x-1}\) tại điểm \(M(2;5)\) cắt các trục tọa độ \(Ox\), \(Oy\) lần lượt tại \(A\) và \(B\). Tính diện tích tam giác \(OAB\).

\(\dfrac{121}{6}\)
\(\dfrac{121}{3}\)
\(-\dfrac{121}{6}\)
\(-\dfrac{121}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).

\(\dfrac{5}{6}\)
\(\dfrac{7}{6}\)
\(\dfrac{2}{3}\)
\(\dfrac{3}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu hàm số \(y=f(x)\) liên tục trên đoạn \([a;b]\) thì diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) là

\(\displaystyle\int\limits_{a}^{b}\left|f(x)-g(x)\right|\mathrm{\,d}x\)
\(\displaystyle\int\limits_{b}^{a}\left|f(x)\right|\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{a}^{b}\left|f(x)\right|\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=x^2+x\) và đường thẳng \(y=-x+3\).

\(S=-\dfrac{32}{3}\)
\(S=\dfrac{16}{3}\)
\(S=16\)
\(S=\dfrac{32}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=3^x\), trục \(Ox\) và hai đường thẳng \(x=-1\), \(x=2\).

\(S=\dfrac{26}{3}\)
\(S=12\)
\(S=\dfrac{12}{\ln3}\)
\(S=\dfrac{26}{3\ln3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng

\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\)
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\)
\(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Diện tích hình phẳng \(S\) đối với hình vẽ trên là

\(S=-\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{a}^{b}-f(x)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \((H)\) là hình phẳng giới hạn bởi đồ thị của các hàm số \(y=\sqrt{x}\), \(y=0\), \(y=2-x\). Diện tích của \((H)\) là

\(\dfrac{4\sqrt{2}-1}{3}\)
\(\dfrac{8\sqrt{2}+3}{6}\)
\(\dfrac{7}{6}\)
\(\dfrac{5}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Diện tích hình phẳng được giới hạn bởi đường cong \(y=\dfrac{1}{2}x^2\) và đường thẳng \(y=x\) được tính theo công thức nào sau đây?

\(S=\displaystyle\int\limits_{0}^{2}\left|x^2-2x\right|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left|\dfrac{1}{2}x^2-x\right|\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left(\dfrac{1}{2}x^2-x\right)^2\mathrm{\,d}x\)
\(S=\displaystyle\int\limits_{0}^{2}\left(\dfrac{1}{2}x^2-x\right)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol \((P)\colon y=x^2\) và đường thẳng \(d\colon y=x\) xoay quanh trục \(Ox\) bằng

\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x-\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x+\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)^2\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \((H)\) là hình phẳng giới hạn bởi đường cong có phương trình \(y=\sqrt{x}\), nửa đường tròn có phương trình \(y=\sqrt{2-x^2}\) (với \(0\leq x\leq\sqrt{2}\)) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của \((H)\) bằng

\(\dfrac{3\pi+2}{12}\)
\(\dfrac{4\pi+2}{12}\)
\(\dfrac{3\pi+1}{12}\)
\(\dfrac{4\pi+1}{6}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự