Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left(1;2;-1\right)\) và cắt mặt phẳng \(\left(P\right)\colon x-2y-2z-8=0\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\) | |
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho điểm \(I(2;-1;-1)\) và mặt phẳng \((P)\colon x-2y-2z+3=0\). Viết phương trình mặt cầu \((S)\) có tâm \(I\) và tiếp xúc với mặt phẳng \((P)\).
\((S)\colon x^2+y^2+z^2-2x+y+z-3=0\) | |
\((S)\colon x^2+y^2+z^2-4x+2y+2z-3=0\) | |
\((S)\colon x^2+y^2+z^2-2x+y+z+1=0\) | |
\((S)\colon x^2+y^2+z^2-4x+2y+2z+1=0\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(2;0;0)\), \(B(0;4;0)\), \(C(0;0;6)\) và \(D(2;4;6)\). Gọi \((P)\) là mặt phẳng song song với mặt phẳng \((ABC)\) đồng thời cách đều điểm \(D\) và mặt phẳng \((ABC)\). Phương trình của \((P)\) là
\(6x+3y+2z-24=0\) | |
\(6x+3y+2z-12=0\) | |
\(6x+3y+2z=0\) | |
\(6x+3y+2z-36=0\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
$cd=3$ | |
$cd=0$ | |
$cd=12$ | |
$cd=6$ |
Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng
$\pi\sqrt{11}$ | |
$3\pi$ | |
$\pi\sqrt{15}$ | |
$\pi\sqrt{7}$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)?
\(\left(Q\right)\colon2x+2y-z+10=0\) | |
\(\left(Q\right)\colon2x+2y-z+4=0\) | |
\(\left(Q\right)\colon2x+2y-z+8=0\) | |
\(\left(Q\right)\colon2x+2y-z-8=0\) |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-4=0\) cắt mặt phẳng \(\left(P\right)\colon x+y-z+4=0\) theo giao tuyến là đường tròn \(\left(\mathscr{C}\right)\). Tính diện tích \(S\) của hình tròn \(\left(\mathscr{C}\right)\).
\(S=\dfrac{2\pi\sqrt{78}}{3}\) | |
\(S=2\pi\sqrt{6}\) | |
\(S=6\pi\) | |
\(S=\dfrac{26\pi}{3}\) |
Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
\(\dfrac{7\pi}{4}\) | |
\(\dfrac{15\pi}{4}\) | |
\(\dfrac{9\pi}{4}\) | |
\(\dfrac{11\pi}{4}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon x+y-2z+3=0\) và điểm \(I\left(1;1;0\right)\). Phương trình mặt cầu tâm \(I\) và tiếp xúc với \(\left(P\right)\) là
\(\left(x+1\right)^2+\left(y+1\right)^2+z^2=\dfrac{25}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{\sqrt{6}}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{25}{6}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+6z-11=0\) và mặt phẳng \((P)\colon x-2y+2z+1=0\). Gọi \((C)\) là đường tròn giao tuyến của \((P)\) và \((S)\). Tính chu vi đường tròn \((C)\).
\(10\pi\) | |
\(4\pi\) | |
\(6\pi\) | |
\(8\pi\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x-2y+2z-2=0\) và điểm \(I(-1;2;-1)\). Viết phương trình mặt cầu \((S)\) tâm \(I\), cắt mặt phẳng \((P)\) theo giao tuyến là một đường tròn có bán kính bằng \(5\).
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=34\) | |
\((S)\colon(x-1)^2+(y+2)^2+(z-1)^2=34\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=16\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=25\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-1)^2+(z-1)^2=25\) có tâm \(I\) và mặt phẳng \((P)\colon x+2y+2z+7=0\). Thể tích của khối nón có đỉnh \(I\) và đáy là giao tuyến của mặt cầu \((S)\) và mặt phẳng \((P)\) bằng
\(12\pi\) | |
\(48\pi\) | |
\(36\pi\) | |
\(24\pi\) |
Trong không gian \(Oxyz\), cho điểm \(I(-3;0;1)\). Mặt cầu \((S)\) có tâm \(I\) và cắt mặt phẳng \((P)\colon x-2y-2z-1=0\) theo một thiết diện là hình tròn. Biết rằng diện tích của hình tròn này bằng \(\pi\). Phương trình mặt cầu \((S)\) là
\((x+3)^2+y^2+(z-1)^2=4\) | |
\((x+3)^2+y^2+(z-1)^2=25\) | |
\((x+3)^2+y^2+(z-1)^2=5\) | |
\((x+3)^2+y^2+(z-1)^2=2\) |
Trong không gian \(Oxyz\), khoảng cách từ tâm \(I\) của mặt cầu \((S)\colon x^2+y^2+(z-1)^2=4\) đến mặt phẳng \((P)\colon2x+2y-z+3=0\) bằng
\(\dfrac{2}{9}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{2}\) | |
\(2\) |