Trong không gian \(Oxyz\), cho điểm \(M(1;-3;4)\), đường thẳng \(d\colon\dfrac{x+3}{3}=\dfrac{y-5}{-5}=\dfrac{z-2}{-1}\) và mặt phẳng \((P)\colon2x+z-2=0\). Viết phương trình đường thẳng \(\Delta\) đi qua \(M\), vuông góc với \(d\) và song song với \((P)\).
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{-1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{2}\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian $Oxyz$, cho ba điểm $A(1;2;-1)$, $B(3;0;1)$ và $C(2;2;-2)$. Đường thẳng đi qua $A$ và vuông góc với mặt phẳng $(ABC)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-2}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z-1}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-1}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z+1}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ | |
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là
$2x-5y+3z-38=0$ | |
$2x+4y-z+19=0$ | |
$2x+4y-z-19=0$ | |
$2x+4y-z+11=0$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ | |
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là
$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$ | |
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$ |
Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?
$\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$ | |
$\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$ | |
$\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$ | |
$\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$ |
Trong không gian $Oxyz$, cho điểm $P(3;1;3)$ và đường thẳng $d\colon\dfrac{x-3}{1}=\dfrac{y+4}{3}=\dfrac{z-2}{3}$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm $P$ và vuông góc với đường thẳng $d$?
$x-4y+3z+3=0$ | |
$x+3y+3z-3=0$ | |
$3x+y+3z-15=0$ | |
$x+3y+3z-15=0$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $M(1;1;-2)$ và vuông góc với mặt phẳng $(P)\colon x-y-z-1=0$ là
$\dfrac{x+1}{1}=\dfrac{y+1}{-1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{-2}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{-1}=\dfrac{z+2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z+1}{-2}$ |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;-2;3\right)\) và đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-1}\). Mặt phẳng đi qua \(M\) và vuông góc với \(d\) có phương trình là
\(3x+2y-z+1=0\) | |
\(2x-2y+3z-17=0\) | |
\(3x+2y-z-1=0\) | |
\(2x-2y+3z+17=0\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\dfrac{x+4}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{3}\) và mặt phẳng \((P)\colon4x+2y+(m-1)z+13=0\). Tìm giá trị của \(m\) để \((P)\) vuông góc với \(\Delta\).
\(m=-7\) | |
\(m=7\) | |
\(m=-\dfrac{7}{3}\) | |
\(m=\dfrac{7}{3}\) |
Trong không gian \(Oxyz\), mặt phẳng đi qua điểm \(M\left(1;1;-1\right)\) và vuông góc với đường thẳng \(\Delta\colon\dfrac{x+1}{2}=\dfrac{y-2}{2}=\dfrac{z-1}{1}\) có phương trình là
\(2x+2y+z+3=0\) | |
\(x-2y-z=0\) | |
\(2x+2y+z-3=0\) | |
\(x-2y-z-2=0\) |
Trong không gian \(Oxyz\), viết phương trình đường thẳng giao tuyến của hai mặt phẳng \((P)\colon x+3y-z+1=0\), \((Q)\colon2x-y+z-7=0\).
\(\dfrac{x+2}{2}=\dfrac{y}{-3}=\dfrac{z+3}{-7}\) | |
\(\dfrac{x-2}{2}=\dfrac{y}{3}=\dfrac{z-3}{-7}\) | |
\(\dfrac{x}{-2}=\dfrac{y-3}{-3}=\dfrac{z-10}{7}\) | |
\(\dfrac{x-2}{-2}=\dfrac{y}{3}=\dfrac{z-3}{7}\) |
Trong không gian \(Oxyz\), đường thẳng \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(\alpha\right)\colon x+z-5=0\) và \(\left(\beta\right)\colon x-2y-z+3=0\) có phương trình là
\(\dfrac{x+2}{1}=\dfrac{y+1}{3}=\dfrac{z}{-1}\) | |
\(\dfrac{x+2}{1}=\dfrac{y+1}{2}=\dfrac{z}{-1}\) | |
\(\dfrac{x-2}{1}=\dfrac{y-1}{1}=\dfrac{z-3}{-1}\) | |
\(\dfrac{x-2}{1}=\dfrac{y-1}{2}=\dfrac{z-3}{-1}\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng
$\dfrac{7\sqrt{55}}{55}$ | |
$\dfrac{\sqrt{55}}{55}$ | |
$0$ | |
$\dfrac{-3\sqrt{55}}{11}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |