Ngân hàng bài tập

Bài tập tương tự

B

Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.

$f(5)=2020-\dfrac{1}{2}\ln2$
$f(5)=2021-\ln2$
$f(5)=2021+\ln2$
$f(5)=2020+\ln2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính $\displaystyle\displaystyle\int\mathrm{e}^{2x-5}\mathrm{\,d}x$ ta được kết quả nào sau đây?

$\dfrac{\mathrm{e}^{2x-5}}{-5}+C$
$-5\mathrm{e}^{2x-5}+C$
$\dfrac{\mathrm{e}^{2x-5}}{2}+C$
$2\mathrm{e}^{2x-5}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Họ nguyên hàm của hàm số $f\left(x\right)=\mathrm{e}^{3x}$ là

$3\mathrm{e}^{x}+C$
$\dfrac{1}{3}\mathrm{e}^{x}+C$
$\dfrac{1}{3}\mathrm{e}^{3x}+C$
$3\mathrm{e}^{3x}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tính $\displaystyle\displaystyle\int\limits3^{2018x}\mathrm{\,d}x$.

$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln2018}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{2018\ln3}+C$
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2019x}}{2019}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.

$F(2)=\ln\dfrac{7}{3}$
$F(2)=-\dfrac{1}{2}\ln3$
$F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$
$F(2)=\ln21$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?

$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$
$F(x)=\cos(1-2x)$
$F(x)=\cos(1-2x)+1$
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho $F(x)$ là một nguyên hàm của hàm số $f(x)=3x^2-\mathrm{e}^x+1-m$ với $m$ là tham số. Biết rằng $F(0)=2$ và $F(2)=1-\mathrm{e}^2$. Giá trị của $m$ thuộc khoảng

$(3;5)$
$(5;7)$
$(6;8)$
$(4;6)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.

$F(3)=\dfrac{7}{4}$
$F(3)=\ln2+1$
$F(3)=\dfrac{1}{2}$
$F(3)=\ln2-1$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.

$F\left(\dfrac{\pi}{6}\right)=0$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Tìm họ nguyên hàm của hàm số $f(x)=\mathrm{e}^{2021x}$.

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}\cdot\ln2021+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2021\cdot\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?

\(3< f(5)<4\)
\(2< f(5)<3\)
\(1< f(5)<2\)
\(4< f(5)<5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).

\(f(1)=8-2\mathrm{e}\)
\(f(1)=\mathrm{e}\)
\(f(1)=3\)
\(f(1)=5-2\mathrm{e}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Họ nguyên hàm của hàm số \(f(x)=x\mathrm{e}^{2x}\) là

\(F(x)=2\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
\(F(x)=2\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}(x-2)+C\)
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{2x+1}\), biết \(F(0)=2\). Tính \(F(1)\).

\(F(1)=\dfrac{1}{2}\ln3+2\)
\(F(1)=\ln3+2\)
\(F(1)=2\ln3-2\)
\(F(1)=\dfrac{1}{2}\ln3-2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một nguyên hàm \(F(x)\) của hàm số \(f(x)=\dfrac{\mathrm{e}^x}{\mathrm{e}^x+2}\) thỏa \(F(0)=-\ln3\) là

\(\ln\left(\mathrm{e}^x+2\right)+\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)+2\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)-\ln3\)
\(\ln\left(\mathrm{e}^x+2\right)-2\ln3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{1}{x-1}\) và \(F(2)=1\). Khi đó \(F(3)\) bằng bao nhiêu?

\(\ln\dfrac{3}{2}\)
\(\ln2+1\)
\(\ln2\)
\(\dfrac{1}{2}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm hàm số \(F(x)\) biết \(F'(x)=\sin2x\) và \(F\left(\dfrac{\pi}{2}\right)=1\).

\(F(x)=\dfrac{1}{2}\cos2x+\dfrac{3}{2}\)
\(F(x)=2x-\pi+1\)
\(F(x)=-\dfrac{1}{2}\cos2x+\dfrac{1}{2}\)
\(F(x)=-\cos2x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi \(F(x)\) là một nguyên hàm của \(f(x)=2x+\mathrm{e}^x\) thỏa mãn \(F(0)=2019\). Tính \(F(1)\).

\(\mathrm{e}+2018\)
\(\mathrm{e}-2018\)
\(\mathrm{e}+2019\)
\(\mathrm{e}-2019\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng

$\dfrac{25}{6}$
$\dfrac{7}{6}$
$\dfrac{43}{6}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự